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Abstract

Effective policy design requires knowing which interventions have made a measurable differ-
ence. Yet policymakers and researchers often observe that outcomes such as emissions, productivity,
or growth have changed without knowing which policies or shocks were responsible. Rather than
evaluating the effects of a known policy or event, our approach starts from the outcome itself: we
detect structural breaks in panel data and attribute them to possible causes. This provides a way
to identify unknown interventions and their timing directly from the data and to bridge the gap be-
tween exploratory data-driven causal discovery and formal causal inference. Formally, we develop
a framework for detecting unknown treatment assignment and timing as structural breaks in fixed-
effects panel models. We show that conventional treatment evaluation of known interventions in a
two-way fixed effects panel (often interpreted as difference-in-differences in a standard treatment
set-up) is equivalent to allowing for heterogeneous structural breaks in the treated units’ fixed ef-
fects. By estimating unit-specific breaks in fixed effects using machine learning or adaptive-LASSO
selection, our method uncovers previously unknown heterogeneous treatment effects and generates
hypotheses about their potential causes, thus linking structural-break detection to modern causal-
inference frameworks. The framework offers a theory-based foundation for recent empirical work
evaluating climate and policy shocks where the onset and effectiveness of interventions are uncer-
tain. We illustrate the approach by identifying the economic impact of ETA terrorism on Spanish
regional GDP per capita without prior knowledge of its timing. The methods are freely available in
the open-source R package getspanel.
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1 Introduction

Designing effective policies depends on understanding which interventions have actually driven mea-
surable change. Governments and researchers routinely evaluate whether specific programs, taxes, or
regulations achieved their intended effects. Most empirical work estimates the effects of (known) treat-
ments by asking: does terrorism affect GDP per capita, or does a carbon tax reduce emissions? These
designs place specific, known interventions at the centre of analysis and estimate their effects on out-
comes of interest and are known as ‘Forward Causal Questions’ (Gelman 2011, Gelman & Imbens 2013,
Mill 1843). While this approach has been highly successful, it presupposes that the relevant interven-
tions are already known to the researcher or policymaker. As a result, it may miss policies, shocks, or
behavioural shifts that have meaningful effects but are not known a-priori.

In practice, policy makers often face the opposite problem: they observe that outcomes have changed but
do not know why. Emissions may decline, productivity may decrease, or insurance losses may rise – yet
the underlying cause remains unclear. The relevant question then becomes not whether a known policy
caused a given effect, but what events or interventions produced the observed change. Identifying such
unknown but impactful policies requires tools that can uncover the timing and location of interventions
directly from the data rather than relying on prior knowledge.

Here we develop an econometric framework to do exactly that. We formalize a method for detecting
previously unknown interventions and their timing as structural breaks in panel data. This approach
operationalises what Gelman & Imbens (2013) call ‘Reverse Causal Questions’, finding the causes of
effects. Our proposed approach extends the familiar two-way fixed effects (TWFE) estimator, commonly
interpreted as a difference-in-differences design in a standard treatment setting, to situations where nei-
ther treatment assignment nor timing are known. We show that conventional difference-in-differences
models are a special case of a more general setup in which treatment episodes appear as structural breaks
in the fixed effects. By allowing the data to reveal which units experienced such shifts and when, the
model can detect heterogeneous treatment effects as well as staggered treatment without requiring prior
specification of the intervention.

As Gelman & Imbens (2013) put it: “Reverse causal reasoning is different; it involves asking questions
and searching for new variables that might not yet even be in our model”. We frame the detection of
treatment interventions through structural breaks as a problem of variable selection. Starting from a
saturated TWFE model that includes a full set of potential step-change functions representing possible
treatments for each unit and time, we apply machine-learning and model-selection methods such as
the adaptive LASSO or general-to-specific (GETS) algorithms to identify the relevant subset of breaks.
These detected shifts can then be interpreted as previously-unknown treatment events that produced the
observed changes in the modelled outcome. Once identified, they generate hypotheses to be attributed
to potential causes, for example policies or shocks, in a post-estimation analysis. This transforms policy
evaluation from a process of testing known hypotheses into one of generating and testing new ones,
providing a novel way to investigate the causes of detected effects.

Our approach provides an econometric foundation for a new class of hypothesis-generating tools that
link structural-break detection to the modern literature on staggered and heterogeneous treatment effects
(see e.g. Roth et al. 2023, Wooldridge 2025). In doing so, we bridge the gap between exploratory
data-driven causal discovery and formal causal inference. By embedding break detection in a TWFE
framework, we demonstrate that the same principles that underpin difference-in-differences estimation
can be used to identify unknown interventions when the timing and assignment of treatment are unknown
a-priori. This general framework also allows for a detection of heterogeneous treatments, including the
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detection of evolving treatment sizes through the use of broken linear trends.

Once structural breaks are detected, the next step is to attribute them to potential causes. This post-
detection attribution stage is inherently hypothesis-generating: researchers can investigate which poli-
cies, shocks, or events most plausibly explain the timing and pattern of the identified breaks. Attribution
can proceed through structured database searches that match break dates and locations to documented
policy actions, or through systematic text-based or archival searches. Advances in artificial intelligence
may further enhance this process. Large language models (LLMs), for instance, could support auto-
mated attribution by linking detected breaks to contemporaneous events across multiple sources while
maintaining transparency through verifiable reference data. Integrating such attribution strategies ex-
tends the empirical reach of break detection from identifying where effects occurred to explaining why
they did.

Our paper thereby provides a theoretical foundation for recent applied papers detecting treatment as
structural breaks, particularly in the context of climate and environmental policy evaluation. Koch et
al. (2022) used break detection to identify major reductions in road-transport emissions and attribute
them to policy mixes. Stechemesser et al. (2024) applied similar techniques in Science to detect cli-
mate policies that achieved large emission reductions worldwide. Pretis (2022) examined Canadian
CO2 emissions and British Columbia’s carbon tax, and Tebecis & Crespo Cuaresma (2025) compiled
a global dataset of structural breaks in greenhouse gas emissions. Tebecis (2023) further evaluated
Austrian climate policies using the same approach. These studies demonstrate the value of detecting
unknown treatment episodes directly from data, yet until now the econometric foundations underlying
these applications have not been formally established. We provide this theoretical basis and clarify how
such applications relate to the broader literature on program evaluation with heterogeneous and stag-
gered treatment. Note that operationalising reverse-causal modelling does not imply reverse causality
between variables but rather the identification of when and where interventions occurred. It can serve
as the first step in a broader empirical strategy, helping researchers detect potential treatment episodes
and subsequently evaluate their causal impact. In this way, it complements rather than replaces standard
program-evaluation techniques.

We illustrate our method using regional data from Spain using the well-known dataset from Abadie &
Gardeazabal (2003). We show that the economic impact of ETA terrorism can be detected directly from
the data without prior knowledge of the occurrence of terrorism. In other words, the intervention does
not need to be known to be identified. The detected breaks align closely with periods of major terrorist
activity, confirming that the model recovers meaningful treatment episodes and heterogeneous responses
across regions. We make the methods available in the freely-available open-source R package getspanel.

By connecting break detection to heterogeneous-treatment models, this paper develops the econometric
underpinnings of an emerging class of data-driven policy-evaluation tools. The framework offers a
general, theory-based approach for identifying unknown interventions and provides the foundation for a
growing literature that applies these methods to study economic, climate, and other policy domains.

1.1 Related Literature & Contribution

Break detection to assess the impact of policy has been commonly used in time series analysis. How-
ever, most time series applications do not have control groups, making a clear causal interpretation of
any break difficult. Examples in the time series literature range from Perron (1989) detecting breaks in
GNP time series attributed to the Great Depression and an oil price shock, Hendry (2020) identifying
policy interventions in UK CO2 per capita emissions, Estrada et al. (2013) quantifying the impact of the
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Montreal Protocol on CFC emissions and subsequently temperatures, to Apergis & Lau (2015) identify-
ing whether breaks in Australian electricity markets align with policy interventions. Piehl et al. (2003)
also use the detection of breaks in time series to assess treatment effectiveness of a youth homicide
prevention programme in Boston.

A causal interpretation in time series nevertheless is possible where breaks occur in some conditioning
variables under super exogeneity (Bazinas & Nielsen, 2015). This has been shown first in Engle et
al. (1983) as causal relations invariant to shocks (referred to as super exogeneity). Under such super
exogeneity causal identification is possible, see e.g. Martinez (2020), Mukanjari & Sterner (2018), or
Pretis (2021) for relevant examples of this. Where super exogeneity does not hold, has not been tested,
or is difficult to establish, however, a causal interpretation of structural breaks is more difficult.

Compared to time series applications, fewer papers tackle structural breaks in a panel setting, and to
the best of our knowledge, no paper has formally considered the link between structural breaks and
treatment effects in a panel, or the detection of breaks in a TWFE panel to detect treatment. Attributing
breaks in panels as treatment was first explored in Pretis (2022) assessing the impact of carbon taxes,
but not formally linked to heterogeneous treatment effects. In our related papers, Koch et al. (2022)
and Stechemesser et al. (2024) we apply the break detection approach to CO2 emissions across multiple
sectors to identify effective policies in a causal framework, albeit with the focus on the application rather
than the econometric theory underlying the approach. Tebecis & Crespo Cuaresma (2025), Tebecis
(2023) and others then build on this approach.

Panel econometric methods for the detection of breaks range from estimating break dates using least-
squares to detecting breaks by selecting over break dates using model selection. In the least-squares
literature, Chan et al. (2008) extend the Andrews (1993) structural change with unknown change point
test (Sup-test) for simple structural breaks to panels in a setting that focuses on detecting changes in
coefficients on random variables (rather than on changes in the fixed effect as would be necessary in
a policy evaluation framework). De Wachter & Tzavalis (2012) test for common breaks in dynamic
panels and Baltagi et al. (2016) study heterogeneous panels with structural breaks using a Bai (1997)-
type approach. Recent work has focused on structural breaks in panels using common factors, these
include Zhu et al. (2020) who study a single break in dynamic panel with a common factor structure, as
well as Cheng et al. (2016) who consider breaks in the form of changing latent factor loadings. Bai et
al. (2020) develop a least squares approach to detect breaks in factor loadings in panel factor models.

The above papers use the classical approach of estimating break dates by least squares, while now there
is a growing literature using variable selection to identify breaks. In this selection-based literature,
Qian & Su (2016b) propose to use the LASSO (Least Absolute Shrinkage and Selection Operator) to
detect breaks in simple time series models, with Qian & Su (2016a) extending this approach to detect
common breaks in panels. Their method is related to our approach presented here, however, we focus
on individual breaks in fixed effects and thus treatment rather than on common breaks. In the factor
literature (not focusing on policy evaluation), Li et al. (2016) propose to use the LASSO to detect
common breaks in interactive fixed effects models. Conley & Taber (2011) compare inference when the
number of treatment groups is small to inference in structural break detection, but they do not explore
this link further.

Our paper is perhaps closest in-spirit to Okui & Wang (2021) on the selection side, and Wooldridge
(2025) on the treatment estimation side. Okui & Wang (2021) detect heterogeneous (group-specific)
structural breaks in coefficients on random variables using the adaptive LASSO. Relative to our ap-
proach, Okui & Wang (2021) do not focus on treatment effects and they partial out the individual fixed
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effects rather than studying breaks in them. Their analysis also focuses on grouped rather than individual
structural breaks. We instead concentrate on breaks in unit fixed effects to detect treatment and explore
alternative selection methods (in addition to the LASSO we also use the general-to-specific – gets –
selection method) which can be embedded in an outlier-robust estimation framework. Nevertheless, the
group-specific method of Okui & Wang (2021) may be a promising avenue of future research in the case
of multiple (unknown) treated units.

Our approach directly complements the recent developments in the literature on difference-in-differences
with staggered treatment and heterogeneous effects (see Roth et al. 2023 for an overview). In a standard
‘known-treatment’ setting, Wooldridge (2025) shows that heterogeneous and time-varying treatment ef-
fects can be identified and estimated consistently using a TWFE estimator in a common timing and
staggered setting using interactions of treatment times and dummies. We show that the starting point
of our break detection approach nests Wooldridge’s interacted TWFE specification as a special case
where we relax the knowledge around treatment assignment and timing, as well as homogeneity of
treatment effects over treated individuals. Thus, the interaction-augmented TWFE estimator proposed
in Wooldridge (2025) constitutes the target of model selection in our case, and the final retained models
identify heterogeneous treatment effects. Specifically, we show that ‘known’ policy dummy variables
in a TWFE panel model are equivalent to step-shifts in the individual fixed effects of the treated units
which can be detected using break detection methods. Similarly, we demonstrate that time-varying and
heterogeneous treatment effects using interactions are equivalent to allowing for unit-specific impulse
dummies which capture single-period structural breaks, and we can allow for simple time-varying treat-
ment effects using broken linear trend dummies. In other words, as we show, treatment dummies in
a TWFE setting used to estimate average treatment effects on the treated are equivalent to structural
breaks taking the form of a step-shift in the individual fixed effects of the panel units. Using this equiva-
lence between step-shifts in the unit-specific intercept (i.e. fixed effect) and known treatment dummies,
we therefore propose an alternative estimation approach based on reverse causal questions: rather than
simply evaluating a known intervention, we instead estimate a TWFE panel model while searching for
potential structural breaks (step-shifts) in the unit-specific intercepts. Notably, this approach identifies
unit-heterogeneous fully-time-varying or piece-wise constant treatment effects. The final model (con-
ditional on having identified treatment breaks) corresponds to a heterogeneous treatment effects model
where treatment effect heterogeneity is identified using interactions as in Wooldridge (2025) and thus
does not suffer from the concerns around heterogeneous treatment effects in staggered interventions (see
Goodman-Bacon 2021, Callaway & Sant’Anna 2020, De Chaisemartin & d’Haultfoeuille 2020, 2021,
Baker et al. 2021).

Overall, relative to the time series literature using breaks for indicative policy evaluation, we expand the
break-detection approach to a panel setting where units without breaks act as a control group against
which a break (i.e. treatment intervention) can be identified. Relative to the existing panel break litera-
ture, we focus on machine learning methods to detect breaks in single individual fixed effects and their
attribution as treatment interventions. Relative to the vast existing TWFE literature on policy evaluation,
our approach implements a reverse-causal estimation strategy detecting previously unknown treatment
(or events) while at the same time allowing known interventions to be embedded. Recently the detection
of structural breaks has also been applied to detect unknown discontinuities in regression discontinuity
design (RDD). For instance, Porter & Yu (2015) use a simple Andrews (1993)-type structural break test
to identify a regression discontinuity without prior knowledge of its existence. Similarly to their argu-
ment of an unknown discontinuity, we explore the use of break detection to identify previously unknown
treatment in TWFEs.
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There are a range of nuances to our proposed approach. First, if treatment assignment and timing is
known (and happens to have a large effect), then imposing interacted treatment dummies allowing for
heterogeneous treatment effects for the known intervention in a TWFE estimator is effectively equivalent
to agnostically detecting a break in this fixed effect (if that is the only break retained) and estimating the
model post-break detection. The estimated model with an imposed break or a single retained break is
identical. In other words, if the intervention was known, we could simply run a TWFE estimator, which
will be equivalent to having found the one particular intervention and then assessing the estimated model.

Second, our idea is modular with respect to known treatment. If there is a known intervention, we can
impose it into the model without selection and estimate its impact, while at the same time searching for
additional breaks. This allows us to assess the impact of a known policy while also detecting potentially
unknown interventions, effectively implementing the theory-embedding approach described in Hendry
& Johansen (2015). It is worth noting that our approach concentrates on causes of effects by first
identifying effects. If there are no effects, naturally we cannot find any corresponding cause. Thus, for
unknown treatment we cannot distinguish between no treatment or a zero treatment effect. For known
treatment, however, this is not a concern as it can easily be embedded as a forced a-priori treatment
variable that is introduced into the model independent of the selection. We can also restrict the search
for breaks and treatment to a subset of units if we suspect that some units may be treated and are certain
that others are not.

Third, our conceptual approach is also modular in terms of the choice of detection method. We can use
different machine learning methods of our choice to detect breaks (i.e. treatment), depending on the
preferred properties of the selection algorithm. For example, if our main concern is the false-positive
detection rate, then we can choose to use methods that control the false discovery rate (such as general-
to-specific selection methods, henceforth ‘gets’). If instead we care about computational speed, we
could use regularised estimators, such as the (adaptive) LASSO.

There are of course some constraints to our methods. First, when detecting breaks in individual fixed
effects, each treated unit will be identified with a separate treatment dummy. While this allows for
straightforward heterogeneous treatment effects, it means that we do not gain power if there are multiple
units that received the same treatment. Thus, our TWFE break detection approach mirrors the use of
interactions to identify known heterogeneous treatment effects (Wooldridge, 2025) and lends itself to
panels with longer time series and smaller cross-sectional dimensions with heterogeneous treatment
(similar to settings encountered when using synthetic controls).

Second, all break detection methods evaluate the presence of breaks relative to a specified underlying
model. If the model is not well-specified, then breaks that we detect may simply reflect model mis-
specification. This is of course also a problem in conventional TWFE difference-in-differences settings,
however, can be amplified in our setting if we attempt to attribute a ‘spurious’ break to an event. This
effect can be mediated by selecting at tight significance levels to control the false-positive rate (when
using gets, see section 3.1.1) or by making use of robust estimators less sensitive to observations falling
outside the specified model (such as embedding break detection in a wider outlier-robust estimation
framework, e.g. Impulse Indicator Saturation, IIS – see Hendry et al. 2008; Jiao & Pretis 2020, Jiao et
al. 2021).

Third, once a treatment effect is detected in the form of a break, it has to be attributed to a potential
cause. In other words, the detection of a break generates potential hypotheses around the potential
cause of the break. Attributing breaks to potential causes can be done through structured searches in
the existing literature and records, and LLMs may be useful tools in this setting. While attribution
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can be a challenge and requires subject-specific knowledge, it offers an opportunity to learn from the
data. A search for a potential cause of an effect is comparable to arguing that a known intervention was
exogenous (or as-if randomly assigned) in a conventional programme evaluation application.

We demonstrate the feasibility of our break-detection approach using a well-known dataset on the eco-
nomic impacts of terrorism in Spain, where the onset of ETA terrorism in the Basque Country depressed
regional GDP per capita relative to unaffected regions. We purposely choose a simple example where
the treatment is actually known, in order to demonstrate the feasibility of our method. The dataset was
originally analysed by Abadie & Gardeazabal (2003) in their seminal paper introducing synthetic control
methods. We show that we can detect the ‘treatment’ of Basque terrorism as breaks in individual fixed
effects in models of GDP per capita without prior knowledge of its occurrence, in line with the original
results by Abadie & Gardeazabal (2003). The treatment intervention can be detected both in a simple
TWFE setting with two regions (where one region is unknowingly treated), as well as in a wider panel
model of all of Spain’s mainland regions. Beyond ETA terrorism, we also detect breaks in other regions
which we attribute to an industrial crisis in Madrid, and increased regional autonomy in the post-Franco
era. Hence, our approach directly operationalises the idea of reverse causal questions – we start with a
simple TWFE estimator, use machine-learning selection to identify significant interventions which can
be interpreted as treatment effects and subsequently attribute them to events that took place. Our pro-
posed panel break detection approach can be readily implemented using our accompanying R-package
gets (Pretis et al. 2018) and the getspanel update (Schwarz & Pretis 2021).

The roadmap for the remainder of the paper is as follows. In section 2.2 we first provide a simple il-
lustration of how structural breaks are closely linked to treatment evaluation in two-way fixed effects
estimators. We consider the standard case of known treatment assignment and illustrate its equivalence
to a step-shift break in the treated units’ intercept. In section 2.3 we then consider the case where
treatment assignment and timing is unknown, and we establish that unknown treatment assignment and
timing can be identified using impulse dummies in a saturated regression (for fully time-varying ef-
fects) and step-dummies (for piece-wise constant effects). Using recent results from Wooldridge (2025),
we show how time-varying and unit-heterogeneous treatment effects can be nested in dummy-saturated
models with more variables than observations. We further show that if we detect multiple treatment
breaks (in multiple different units), they can be interpreted as time-varying treatment effects in a stag-
gered treatment intervention setting. We discuss our approach in a balanced panel without explicitly
discussing control variables, however, the results should generalise to the inclusion of other covariates.
In the following section 3 we then briefly discuss two estimation approaches using general-to-specific
(gets) selection and the adaptive LASSO (and provide some simulations in the Supplementary material).
Finally, we apply our methods to models of Spanish regional GDP per capita in section 4.
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2 Conceptual Approach:
Break Detection to Detect Unknown Treatment Assignment & Timing

We consider the detection of treatment and subsequent estimation of treatment effects when both treat-
ment assignment and treatment timing are unknown. We show that if treatment assignment and timing
are unknown, such treatment can be identified by allowing for potential structural breaks at any point
in time for any unit in a model including individual and time fixed effects. Applying machine learning
methods allowing for model selection for more variables than observations, we then remove all irrelevant
treatment dummies and are left with the resulting model that identifies treatment assignment, timing, and
estimates treatment effects conditional on the treatment effects being non-zero.

To aid the reader’s understanding, we present a stylised example in Figure 1, which provides guidance
for the various aspects of our conceptual approach we touch upon in the following sections.

Unit 1 (treated)

Unit 2 (untreated)

Unit 1 (treated)

Treatment (detected)
unknown a−priori

Treatment Effect 
(detected) as 
step-shift

Unit 2 (untreated)

Unit 1 (treated)

Treatment Time

Unit 1 (treated)

Unit 2 (untreated) Unit 2 (untreated)

Known Treatment Timing and Assignment Unknown Treatment Timing and Assignment
detected as Structural Breaks

A1: Time-Varying Treatment E�ects A2: Constant Treatment E�ects B1: Time-Varying Treatment E�ects B2: Constant Treatment E�ects

Set of all possible treatment indicators
(removed using machine learning)

Average Treatment 
Effect on the Treated

Figure 1: Detecting unknown treatment timing and assignment as structural breaks – a stylised example
using artificial data. Left: ‘Known’ Treatment baseline for time-varying and constant treatment effects.
Right: Detecting treatment as breaks using impulses for time-varying and step-shifts. All possible
impulse and step-indicators shown in grey, a subset of which (red) identify the true underlying treatment
(blue in left panels).

2.1 Setting

To illustrate the overall motivation and the close link between structural breaks and treatment evaluation,
consider a panel of N units over T time periods where one group is treated with a single treatment from
time t = q onwards. We initially consider the baseline case of known treatment assignment and timing,
where the treatment indicator d = 1 for the treated group (or individual) and d = 0 for the untreated.
Using the notation in Wooldridge (2025), we denote by yt(0) the outcome in the untreated control group,
and yt(1) the outcome in the treated group at time t. The treatment effect at time t due to treatment
occurring from time t = q onwards is given by the difference yt(1) − yt(0). As is convention in the
literature, we focus on the average treatment effect on the treated τt:

τt = E[yt(1)− yt(0)|d = 1] (1)
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To identify the average treatment effect we assume there is no anticipation of treatment, in other words,
the potential outcome for a unit prior to treatment is identical to the untreated units:

E[yt(1)− yt(0)|d = 1] = 0, for t < q (2)

Further we rely on the common trend assumption which is standard in much of the treatment effects
literature:

E[yt(0)− yt=1(0)|d] = E[yt(0)− yt=1(0)] = θt, for t = 2, ..., T (3)

Finally, we also assume there is at least one untreated unit. We then write the observed outcome as:

yt = yt(0) + d[yt(1)− yt(0)] (4)

The expected outcome conditional on treatment is:

E[yt|d] = E[yt(0)|d] + d× τt (5)

We define the change in yt over time in absence of treatment as:

gt(0) = yt(0)− yt=1(0) (6)

and under the common trend assumption we have that E[gt(0)|d] = E[gt(0)] = θt. We thus have that:

E[yt=1(0)|d] = λ+ ξd (7)

where ξ denotes the average pre-treatment difference between the treated and untreated groups and λ

denotes the average level of y for the untreated. Combining all above yields the expected value of yt
conditional on treatment as:

E[yt|d] = λ+ ξd+ θt + d× τt (8)

For illustration purposes, assume the treatment effect is constant over time, τt = τ . Under the assump-
tion of no anticipation we have that:

E[yt|d] = λ+ ξd+ θt, for t < q (9)

= λ+ ξd+ θt + d× τ , for t ≥ q (10)

This is a standard result in the treatment effects literature and the above model can be consistently
estimated using a TWFE estimator (see e.g. Wooldridge 2025):

yi,t = ci + gt + τwi,t + ui,t (11)

with wi,t = di × qt where di is an indicator for whether the individual is treated, qt an indicator for the
post-treatment period, ci denote individual fixed effects, and gt time fixed effects. Note that Wooldridge
(2025) groups the untreated mean into a single intercept, however, the treatment effect estimates are
unaffected by whether we include a common intercept or allow for unit-specific intercepts (i.e. fixed
effects). Notably, the above model shows the close link to structural breaks as we identify the average
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treatment effect as a step-shift of magnitude τ at time q in the treated unit’s intercept:

E[yi,t|di = 1] = ci + τ × 1{t≥q} + gt (12)

= ci,t + gt

where ci,t =

{
ci for t < q

ci + τ for t ≥ q
(13)

Figure 1 (column A2, left) shows a stylised example illustrating how a constant treatment effect corre-
sponds to a simple step-shift in the individual-specific intercept.

2.2 Known Treatment Assignment with Unknown Timing

Now suppose we know which units are treated, but the timing of treatment is unknown. This may be the
case when we suspect some intervention or event took place in some regions/countries, but the actual
date of the intervention is uncertain. Let H denote the set of treated individuals and 1{i ∈ H, t ≥ q} an
indicator function equal to one when i is part of the treated group and t falls in the post-treatment period.
When treatment timing is unknown, we can interpret the identification of treatment effects as a break
detection problem where we detect a structural break in the treated unit’s specific intercept conditional
on there being a non-zero treatment effect:

yi,t = ci + τ × 1{i ∈ H, t ≥ q} + gt + ui,t (14)

When treatment is known, the above model (14) corresponds to a partial structural change model (see
e.g. Perron 2006) with ci,t being allowed to break for treated individuals in the sample, and we estimate
the break date q as well as treatment effect τ . If there is only a single treated unit and we detect a
structural break in its intercept at the time of treatment, then the resulting model with a structural break
is identical to the treatment effect model (11). There is thus a close link between break detection and
the estimation of treatment effects in TWFE estimators.

However, the above model (14) may be overly restrictive as it assumes a single treatment with known-
assignment and unknown-timing. In practice there may exist a myriad of possibly unknown interventions
and we may face uncertainty around both treatment assignment as well as timing. In other words, we
may not know which (if any) units are treated, and at what time such treatment may have occurred. In
addition, treatment effects may also be heterogeneous over treated units as well as over time.

We therefore now turn to the setting where we allow for both treatment assignment and timing to be
unknown (see section 2.3), and also relax the assumption of time-constant and homogeneous treatment
effects over treated units (Section 2.3.1). Subsequently we consider multiple treatments (which could
also be interpreted as staggered adoption) in section 2.3.3.

2.3 Unknown Treatment Assignment & Timing for a Single Treatment

We now consider detecting treatment when treatment assignment and timing are unknown and treatment
effects may be heterogeneous over treated units and time. We begin by relaxing the assumption that
treatment effects are constant over time in the known treatment setting. Allowing for time-varying
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treatment effects τt we can write the expected outcome conditional on treatment as:

E[yt|d] = λ+ ξd+ θt, t < q

= λ+ ξd+ θt + d× τt, t ≥ q (15)

If treatment assignment and timing is known, the above can be consistently estimated using interactions
in a TWFE estimator (see Wooldridge 2025 for the ‘known treatment’ case), where again we here allow
for unit-specific intercepts:

yi,t = ci + gt +
T∑

s=q

τs(di · 1{t=s}) + ui,t (16)

This is equivalent to a set of step-shifts of duration 1 (with common coefficient over i in H) at times
q, q + 1, ..., T , where each time step is denoted as an index s, which ranges from s1, s2, ..., S. We now
relax the assumption of having common coefficients over i, in other words, we allow for heterogeneity
in treatment effects over i. Let H = {m1,m2, ...,mM} denote the set of M treated units. For example
if units i = 2 and i = 3 are treated, then there are two treated units M = 2, and m1 = 2 and m2 = 3.
The above model (16) can then be written in a general specification allowing for unit-heterogeneous
treatment effects at every time as:

yi,t = ci + gt +
∑
j ∈ H

T∑
s=q

τj,s1{i=j,t=s} + ui,t (17)

where 1{i=j,t=s} denotes an indicator function equal to one for all treated i in the set of treated units
H and t = s in the post-treatment period s ≥ q, and zero otherwise. This specification relaxes the
restriction of homogeneous treatment effects across treated units. Figure 1 (column A1, left) shows a
stylised example of individual impulses capturing a treatment effect. Specifically, each treated post-
treatment observation is captured by a single time-period dummy. While these cannot be estimated
consistently because they capture single observations, such dummy variables can be estimated unbias-
edly (see Hendry & Santos 2005) and, as we showed here, identify unit- and time-specific treatment
effects.

To relate the known case to the unknown treatment setting, we further refine our notation. We define
an index of the timing of non-zero treatment effects for each treated unit j ∈ H denoted as Rj =

{qj,s=1, qj,s=2, ..., qj,Sj} where Sj denotes the number of treatment indicators for unit j. For example,
suppose that in a 3-unit panel with T = 20 observations units i = 2 and i = 3 are treated (m1 = 2,m2 =

3) with non-zero treatment effects from t = q, ..., T . Then H = {2, 3} with corresponding treatment
effects at R2 = {q2,1 = q, q2,2 = q+1, ..., q2,S2 = T} and R3 = {q3,1 = q; q3,2 = q+1, ..., q3,S3 = T}.
With common treatment timing and effects this implies that R2 = R3. Thus the known-treatment and
known-timing baseline in (17) can be written as:

yi,t = ci + gt +

mM∑
j=m1

qj,Sj∑
s=qj,1

τj,s1{i=j,t=s} + ui,t (18)

or by simplifying notation as:

yi,t = ci + gt +
∑
j∈H

∑
s∈Rj

τj,s1{i=j,t=s} + ui,t (19)
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Now what if treatment assignment and timing are unknown? The above model in (19) constitutes the
‘known’ intervention baseline, i.e. the target of model selection/break detection. In 2.3.1 we now
consider the detection of treatment assignment and timing allowing for unit-heterogeneous and time-
varying treatment effects as in (19) which we will show is matched by a saturating set of unit-time-
specific impulse dummies. We then consider treatment detection allowing for unit-heterogeneous but
piece-wise constant treatment effects over time, which we will show is nested by a saturating set of
unit-specific step-shift breaks.

2.3.1 Detecting Unknown Treatment When Treatment Effects are Fully-Time Varying

If treatment assignment and treatment timing is unknown, we propose that the ‘known’ treatment model
(19) can be embedded in a general model allowing for potential treatment of any unit at any point.
The most flexible specification that nests the ‘known’ treatment specification (19) as a special case is a
fully-saturated model allowing for a treatment dummy for each individual at every point in time:

yi,t = ci + gt +

N∑
j=1

T∑
s=1

τj,s1{i=j,t=s} + ui,t. (20)

The model in (20), which identifies unit-specific treatment effects for each unit for each time period,
however, cannot be estimated as such because the number of parameters matches (or exceeds) the num-
ber of observations. Effectively there are NT possible indicator variables added to the balanced panel.
Figure 1 (column B1, right) shows the full set of these impulse indicators, a subset of which identify the
true treatment effect shown in panels on the right.

The aim is thus to reduce the general model (20) to a sparse model, ideally coinciding with the underly-
ing target of the known baseline (19). Thus, we require the additional assumption that treatment effects
are sparse, we have at least one untreated unit and some untreated time-periods for treated units – as-
sumptions that are very common in the wider treatment evaluation literature. Starting with this general
model, we then apply machine learning/model selection to remove all but ‘relevant’ dummy variables
using selection algorithms capable of handling more variables than observations. We discuss two pos-
sible machine learning algorithms in more detail in section 3.1. In fact, the dummy-saturated model in
(20) is equivalent to an outlier-robust Huber-skip estimator, where the retained impulse dummies detect-
ing ‘outliers’ relative to the model capture the time-varying unit-specific treatment effects (see e.g. Jiao
et al. 2021, Hendry et al. 2008, Johansen & Nielsen 2009, Johansen & Nielsen 2016a). We write the
sparse final selected model as:

yi,t = ĉi + ĝt +
∑
j∈Ĥ

∑
s∈R̂j

τ̂j,s1{i=j,t=s} (21)

where we effectively estimate treatment assignment Ĥ = {m̂1, m̂2, ..., m̂M̂}, together with the index
of treatment occurrence R̂j = {q̂j,1, q̂j,2, ..., q̂j,Ŝj

} where Ŝj denotes the number of treatment indicators
for unit j, and the time-varying and unit-specific treatment effects τ̂j,s conditional on having non-zero
treatment effects. Note that we detect treatment when it has an effect, i.e. we detect treatment effects
conditional on them being non-zero. Using the resulting estimated treatment effects τj,s it is straight-
forward to compute the average treatment effects for the treated (ATTs) for specific units or time periods.
As impulse indicators are orthogonal, it is trivial to compute the standard error for the resulting ATTs.
For example, we can compute the estimated ATT for individual j over the entire period of non-zero

12



detected treatment effects as:

ÂTT j =
1

Ŝj

Ŝj∑
s=1

τ̂j,s, with standard error se
(
ÂTT j

)
=

√√√√√ 1

Ŝj

Ŝj∑
s=1

se (τ̂j,s)
2 (22)

If we are interested in a subset of treated periods we could simply restrict the ATT to those relevant time
periods (or units). A remaining issue, however, is that detecting individual impulses may suffer from low
power if treatment effects are small and actually constant over some period of time. If we are interested
in ATTs over time for some treated units, allowing for piece-wise constant treatment effects may yield
higher power of detection which we discuss in the next section 2.3.2.

2.3.2 Detecting Unknown Treatment With Piece-Wise Constant Treatment Effects

While treatment effects may be heterogeneous over individuals i, they may be constant for some time
periods. Such constancy over time can lead to higher power to detect treatment. Consider treatment
effects in (15) that are constant over time following treatment from t = q onwards, but allowed to vary
over treated individuals:

yi,t = ci + gt +
∑
j∈H

τj1{i = j, t ≥ q} + ui,t (23)

Then for each treated unit in H (where di = 1) with time-invariant treatment effect τi,t = τi, for all t,
the change from pre-treatment to post-treatment is given by a step-shift change in the unit-specific inter-
cept of magnitude τi. For example, for treated unit i with time-invariant treatment effect, the expected
outcome is given by:

E[yi,t|di = 1] = ci + gt + τi × 1{t≥q}

= ci,t + gt (24)

where ci,t =

{
ci for t < q

ci + τi for t ≥ q

which is just a step-shift in the unit-specific intercept (i.e. fixed effect), equal to ci prior to treatment, and
ci + τi post-treatment. Estimates of τi then correspond to the unit-specific average treatment effect over
time. If treatment timing and assignment are unknown, we can generalise the impulse-dummy approach
to nest known treatment as a special case in a general model now allowing for step-shifts at any point in
time as:

yi,t = ci + gt +

N∑
j=1

T∑
s=2

τj,s1{i=j,t≥s} + ui,t (25)

where a subset of the step-functions 1{i=j, t ≥ s} correspond to the actual treatment effects model in (23).
This allows for any unit to be potentially treated at any point in time – with s starting at 2 rather than 1,
so as not to coincide with the fixed effect in ci. We then aim to remove treatment indicators such that
we only retain the subset of truly treated units and time periods. Under sparsity of treatment effects i.e.,
there remain units and time periods without treatment, we write the final selected model as:

yi,t = ĉi + ĝt +
∑
j∈Ĥ

∑
s∈R̂j

τ̂j,s1{i=j,t≥s} (26)
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where we estimate treatment assignment by detecting those units i that have at least one break indicator
retained, and break times are estimated by the starting date of each retained break function. Figure 1
(column B2, right) shows the full set of step-functions, a subset of which identify the true treatment
effect.

Note that this setup does not impose that treatment effects have to be strictly constant over time post-
treatment, as a linear combination of step-functions can capture time-varying treatment effects. In fact,
our general framework also allows for treatment effects which are non-constant across the time dimen-
sion. This could for example take the form of broken linear trend functions – so called Trend Indicator
Saturation (TIS) – as developed by Castle et al. (2025). Based on equation 25, we can therefore replace
the step-indicators with trend-indicators in the form:

yi,t = ci + gt +
N∑
j=1

T∑
s=2

τj,s(t− s)1{i=j,t≥s} + ui,t (27)

These variations of different saturation methods allow our framework to substantially expand the type
of heterogeneous treatment effects that can be considered in a standard causal inference set-up.

2.3.3 Unknown Treatment Assignment and Timing For Multiple Treatments

If there is a single underlying treatment and break detection identifies a single intervention then the
interpretation and attribution of detected effects is straightforward. However, in practice there may be
multiple treatments detected as breaks at different times for multiple different units. What do we identify
if we detect multiple such treatment occurrences at different times for different units? Irrespective of the
selection algorithm employed (see section 3.1), consider the following final retained model with a range
of detected treatment impulse dummies:

yi,t = ĉi + ĝt +
∑
j∈Ĥ

∑
s∈R̂j

τ̂j,s1{i=j,t=s} (28)

or step-functions:
yi,t = ĉi + ĝt +

∑
j∈Ĥ

∑
s∈R̂j

τ̂j,s1{i=j,t≥s} (29)

What is identified if the detected treatment time varies across units in the panel? For example, what
if we find both j = 1 and j = 2 to be in the treated group, but their treatment timing differs, i.e.
Rj=1 ̸= Rj=2 for both j = 1 and j = 2? We show that the final retained models with heterogeneous
treatment dummy variables (28) and (29) are equivalent to staggered treatment with heterogeneous ef-
fects where heterogeneity and staggered adoption are captured through interactions. In other words, the
impulse indicator estimator identifies unit and time-specific staggered treatment effects conditional on
the treatment effect being non-zero. If treatment effects are constant over time, then a saturating set
of step-functions nests the known-treatment assignment and timing model as a special case even when
treatment is staggered. To illustrate this equivalence, we follow the discussion in a known-treatment set-
ting by Wooldridge (2025) on how interaction terms identify treatment effects in a staggered treatment
setting. Subsequently we show that this is nested by the IIS and SIS break detection estimators in an
unknown treatment setting, establishing that detected breaks identify unit- and time-specific treatment
effects.

For exposition, consider a staggered treatment DGP where we denote the time of the first intervention
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by q. We define treatment cohort dummies similar to Wooldridge as dq, ..., dQ where Q denotes the final
time of intervention, which would be equal to T when treatment lasts until the end of the sample. We
refer to the time of each intervention as r ∈ {q, q + 1, ..., Q}. The potential outcome at time t for unit
treated at time r is given by yt(r), with the outcome for the never treated unit referred to as yt(∞) i.e.
treated at no point in time. The quantities of interest are the treatment effects of each unit first receiving
treatment at time r given by the difference in outcomes yt(r) − yt(∞), r = q, ..., Q. In a staggered
setting we hope to identify the average treatment effects on the treated ATT for each intervention (given
by different cohorts which we will relax to different individuals):

τr,t = E[yt(r)− yt(∞)|dr = 1], r = q, ..., Q; t = r, ..., T. (30)

Under no anticipation and common trends in a standard known-treatment setting, Wooldridge (2025)
demonstrates that heterogeneous treatment effects can be consistently estimated in a staggered treatment
setting using interactions in a TWFE estimator (we replicate the derivation in Supplementary Section
6.1). Specifically, the expected outcome in a staggered treatment setting can be written as

E[yt|d] = η + λqdq + ...+ λQdQ + θt (pre-treatment t < q)

= η + λqdq + ...+ λQdQ + θt + τq,tdq + ...+

+τQ,tdQ (post-treatment t ≥ q) (31)

where η is the average level of y for the untreated group and λq refers to the average level of y for the
treated cohorts pre-treatment. This can be consistently estimated using a TWFE estimator with time-
cohort interactions as:

yi,t = ci + gt +

Q∑
r=q

T∑
s=r

τr,s(di,r · 1{t=s}) + ui,t (32)

In the above equation each cohort has a set of time-varying treatment effect estimates. Now con-
sider each treated unit in the panel being allowed its own treatment effects (i.e. each unit in each
cohort receives its own treatment effect or each cohort is of size one). As before, consider H =

{m1,m2, ...,mM} as the set of i that are treated at some time, where treatment timing is not exclu-
sive. In other words, m1 and m2 may be treated at the same time (but may also be treated at different
times). Then relaxing the above assumption that each treatment cohort has the same treatment effect,
the above model (32) can be written as:1

yi,t = ci + gt +
∑
j∈H

T∑
s=r

τj,s1{i=j,t=s} + ui,t (34)

This is identical to the interaction of the treatment dummy di,r and time dummies 1{t=s} above, except
we disaggregate treatment cohorts into individual units. Using simplifying notation, we can write (34)
as:

yi,t = ci + gt +
∑
j∈H

∑
s∈Rj

τj,s1{i=j,t=s} + ui,t (35)

This matches the impulse-dummy saturated final specification where treatment assignment and timing
is estimated in (28). Similarly, if treatment effects are piece-wise constant over time we can write (34)

1To recover (32) we could restrict equation (34) as:

τml,s = τmk,s = τr,s, for k ̸= l and (ml,mk) ∈ the same treatment cohort r (33)
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as:
yi,t = ci + gt +

∑
j∈H

∑
s∈Rj

τj,s1{i=j,t≥s} + ui,t (36)

Estimating this heterogeneous staggered-treatment model matches the post-selection step-function model
in (29). Thus, detecting multiple treatments through impulses or step-indicators is equivalent to the esti-
mation of treatment effects in a staggered-intervention setting when heterogeneous treatment effects are
identified using interactions. We identify average treatment effects (over time) for each treated unit rela-
tive to the never treated cases, conditional on the treatment effect being large enough to be detected. If a
single unit experiences more than one treatment – then this can be interpreted as time-varying treatment
(where the sum of effects is the treatment effect relative to the never treated), or a separate treatment
event relative to treatment received earlier.

2.4 Challenges

Naturally there are challenges to our proposed approach to detect treatment, and properties of the final
identified model will depend on the machine learning/model selection algorithms employed. In section
3, we briefly discuss the general properties of using ‘gets’ (through impulse- and step-indicator satu-
ration, IIS and SIS respectively) and the (adaptive) LASSO (Tibshirani 1996, Zou 2006) and how they
relate to the power of identifying treatment correctly, controlling the false-positive rate of retained break
variables, and conducting valid inference.

First, we may miss that treatment occurred (a relevant break variable is not retained). However, our
approach allows a researcher to embed a known or suspected treatment just like in a difference-in-
difference treatment evaluation setting (see section 3.2). Additionally, varying the acceptable false-
positive rate can also result in identifying more potential treatments.

Second, we may detect spurious treatment as false-positives by retaining irrelevant break variables.
Though, the ‘gets’ approach described in section 3.1.1 allows an explicit control of the false-positive
rate.

Third, we may face challenges with post-selection inference (effects may be biased as large breaks are
more likely to be retained than small ones). Some of these concerns can be mitigated through bias-
correction and adjustment for post-selection inference.2

Fourth, if treatment affected all units under analysis, then the treatment effect will be subsumed into the
year fixed effects gt and not detectable as such – but again such a treatment would also not be identified
with comparable treatment evaluation methods.

3 Operationalising the Detection of Treatment Assignment and Timing

3.1 Detection Methods and Their Approximate Properties

The idea of detecting structural breaks to identify treatment can be operationalised by applying break-
detection in a panel setting, starting with the general saturated models (20) or (25) for fully time-varying
and piece-wise constant treatment effects respectively. We emphasise that the idea of detecting treatment
by detecting breaks is separate from the method of implementation – there are numerous possible ma-
chine learning detection/selection methods available and their properties will determine the effectiveness
of detecting previously unknown treatment. Here we briefly consider two model selection approaches:

2See e.g., the coefficient bias correction function in the ‘gets’ package.
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general-to-specific selection using impulse-indicators (interpreted as an outlier-robust estimator) or step-
indicators (for piece-wise constant treatment), and the (adaptive) LASSO, though we are not limited to
these in practice. For example, the group-specific break detection approach in Okui and Wang (2021)
could be a promising future avenue of detecting treated groups rather than individuals. Note that in the
outlier-robust/general-to-specific setting, the problem of variable selection is generally studied under
the null of no treatment – i.e. we focus on the false positive rate of detection which is also the main
calibration parameter. In turn, in the shrinkage-based model selection literature (e.g. the LASSO) the
focus has been on consistent selection, with less attention being paid to the false positive rate. We also
consider the performance of each in a simulation study reported in Supplementary Section 6.2.

3.1.1 Treatment Detection using ‘gets’ and Impulse- or Step- Indicator Saturation

The impulse-indicator saturated model (20) is equivalent to impulse indicator saturation (IIS, see Hendry,
Johansen and Santos, 2008) in a panel and can be interpreted as a Huber-skip outlier-robust estimator
(see e.g. Jiao et al. 2021, Johansen & Nielsen 2009, Johansen & Nielsen 2016a). Coefficients on
dummies that are used to determine outliers correspond thus to individual- and time-specific treatment
effects. IIS has well-established properties under the null of no outliers (here interpreted as no treat-
ment/zero treatment effects) where the false positive rate can be easily controlled by specifying the rel-
evant tuning parameter. IIS corresponds to a robust Huber-skip estimator and targets the false-positive
rate of detection by removing impulse indicators up to the chosen level of significance γc. For example,
under a normal reference distribution, choosing c = 1.96 would correspond to a target level of signif-
icance of γ1.96 = 0.05. We denote the observed false positive rate γ̂c as the proportion of spuriously
retained indicators at the chosen cut-off c out of all possible break variables considered:

γ̂c =
Lc

L
(37)

where Lc =
∑M̂

j=1 Ŝj is the number of retained indicator variables at cut-off c and L denotes the total
number of potential treatment variables selected over, usually equal to the total sample size L = n =

NT in a balanced panel allowing for treatment at any point in time for every unit. The asymptotic
properties of IIS under the null of no breaks as the total sample size n → ∞ are explored in Hendry
et al. (2008) and Johansen and Nielsen (2009; 2016b), who show that when there are no breaks (and
accounting for multiple testing), the false positive rate of retained breaks (i.e. the number of retained
indicator dummies Lc relative to all possible indicators L) converges to the chosen nominal level of
significance of selection γc:

γ̂c =
Lc

L
→ γc, as n → ∞ (38)

where n denotes the sample size (in a balanced panel n = NT ). In other words, if there is no treatment
effect (i.e. if there are no true underlying breaks), then the proportion of spuriously detected indicators
converges to the chosen level of significance, e.g. 1% for γc = 0.01. In the present context of detecting
treatment at any point in time for any unit in a balanced panel, selecting at γc = 0.01 yields an expected
number of 0.01 × NT spuriously retained indicators. Thus, IIS in a Huber-skip robust interpretation
makes it straightforward to control the false discovery rate of breaks (and thereby treated units) by
varying γc.

We can estimate the set of treated units Ĥ as those that have at least one treatment indicator (i.e. impulse
dummy) retained:

i ∈ Ĥ if Q̂i > 0 (39)
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For practical purposes, this definition could also be made more stringent to differentiate between ‘out-
liers’ and actual treatment that can be attributed to potential causes. In other words, we could restrict
identification of treatment to some minimum of consecutive impulse dummies. The number of estimated
treatment breaks for unit j is given by Ŝj (with E[Ŝj ] = γc × T ). The probability of a particular unit
in the panel being falsely-classified as ever-treated depends on the number of time series observations
for each unit. Consider a panel of N individuals over T time periods. IIS adds NT dummies, with an
expected number of retained dummies of γc ×NT . The probability of at least one break per individual
will depend on the number of time periods in the sample and the cut-off γc. The probability of a partic-
ular unit i being spuriously classified as ever-treated is given the probability of at least one observation
of unit i being falsely-classified as treated:

P (i ∈ Ĥ|di = 0) = 1− (1− γc)
T (40)

which increases with T because for larger samples (and fixed γc) the probability of retaining an indicator
spuriously increases as the number of indicators increases with T . Under the null of no treatment (when
in fact no unit is treated), the expected number of falsely detected treated units is then given by:

E[M̂ ] = P (i ∈ Ĥ|di = 0)×N = (1− (1− γc)
T )N (41)

If we are worried about the false-positive rate of treated units specifically (rather than the false-positive
rate γc of treatment at any point in time for any unit), it is possible to scale γc to ensure a stable false-
positive rate of classifying the treatment group. Let pH denote the target false positive rate of a unit
being incorrectly-classified as treated. Then for any target false positive rate pH , we can choose γc as:

γc = 1− (1− pH)
1
T (42)

This controls the false positive rate of being assigned to the ever treated group to pH in expectation.
For example if T = 50, and we aim for a false-positive rate of a single unit incorrectly being classified
as treated of 5% i.e. pH = 0.05, then we should set the nominal level of selection to γc = 0.001 =

1− (1− 0.05)
1
50 . Similarly, we could set the target level of significance to maintain a stable number of

false-positive treated units. If on average we are willing to accept a total of N0 = E[M̂ ] false-positive
treated units in expectation (where M̂ is the estimated number of treated units), the above results imply
that:

N0 = (1− (1− γc)
T )N (43)

which can be targeted by setting γc to:

γc = 1− (1− N0

N
)

1
T (44)

and which will yield N0 expected treated units in expectation when there are in fact no treated units in
the true underlying DGP. For example, if we have a panel of N = 20, T = 50, and we are willing to
accept one unit to be falsely-classified as treated on average (N0 = 1), then we can set γc = 0.001 ≈
1− (1− 1

20)
1
50 . Thus, if we are concerned about the false positive rate of treatment classification, then

treatment detection in a panel perhaps warrants tighter target significance levels γc than conventionally
used in the selection/break detection literature.

If we consider the piece-wise constant treatment effects model matched by step indicators (25), then
selecting over treatment variables using the tree search ‘gets’ is equivalent to applying step-indicator
saturation (SIS, Castle et al., 2015) in a fixed effects panel where blocks of steps are included for each
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individual. SIS uses a near exhaustive tree-search based on a specified level of significance γc up to
which individual step-functions are removed. The properties of SIS are reasonably well-understood
(see Castle et al., 2015; Nielsen & Qian, 2025), and transfer to the panel setting when interpreted as a
least-squares dummy variable estimator. The asymptotic properties of SIS under the null of no breaks
as n → ∞ are explored in Nielsen & Qian (2025), who show that when there are no breaks (and
accounting for multiple testing), the false positive rate of retained breaks (i.e. the number of detected
break indicators Lc relative to all possible break variables L) converges to the chosen nominal level of
significance of selection γc:

γ̂c =
Lc

L
→ γc, as n → ∞ (45)

Specifically, if we allow for possible treatment of each unit at every point in time, then – in absence of
treatment – the expected value of detected breaks is γc × N(T − 1) in a balanced panel.3 This again
translates into a probability of being classified as treated as above, with an exponent of (T-1):

P (i ∈ Ĥ|di = 0) = 1− (1− γc)
(T−1) (46)

Then for any target false positive rate of being classified as treated pH , we could choose γc as:

γc = 1− (1− pH)(1/(T−1)) (47)

This matches the properties of IIS except we are searching over N(T − 1) rather than NT possible
indicators in an exhaustive search – of course the first indicator would coincide with the fixed effects.

Under the alternative (i.e. in the presence of actual treatment), for simple cases (where the number of
variables does not exceed the number of observations), ‘gets’ has been shown to be a consistent model se-
lection procedure retaining all relevant variables with probability equal to one as n → ∞ (see e.g. Cam-
pos et al., 2003). In our setting where the number of variables can exceed the number of observations, we
investigate the performance under the alternative (in the presence of structural breaks/treatment) using
a range of simulations (see section 6.2). As the selection rule is pre-specified, coefficients on impulse
and step-indicators could be bias-corrected to address concerns about post selection inference (see Pretis
et al. 2018 for an implementation of bias correction in SIS). The ‘gets’ selection approach using IIS or
SIS can be readily implemented to detect treatment breaks in panels using the R-package ‘gets’ with the
‘getspanel’ update.

3.1.2 Treatment Detection using the (adaptive) LASSO

As a second possible selection approach we briefly consider one variant of the LASSO to detect unknown
treatment in the TWFE panel model. Unlike ‘gets’, the LASSO does not target the false-positive rate,
instead penalising the L1-norm of possible coefficients. The simple LASSO itself is not a consistent
model selection method, however, the adaptive LASSO which modifies the weights on coefficients is
consistent and exhibits oracle properties (Huang et al., 2008). In particular, Huang et al. (2008) show
the oracle properties of adaptive LASSO in high-dimensional problems where the number of regressors
increases with the sample size.

To implement the LASSO to identify treatment we require different weights v on the coefficients that
will be penalised. We specify the weights on control variables such that these are never removed from
the model (e.g. the individual and time fixed effects), while the potential treatment variables will receive

3Albeit simulation results show a higher false-positive rate for SIS in small samples, warranting perhaps a more conservative
choice of γc.
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penalty weights that allow them to be dropped from the model. Since the base models with impulses
(20) or steps (25) may contain more variables than observations we cannot use conventional OLS as an
initial estimator to determine the penalty weights for the adaptive LASSO. Instead, we follow the fixed
effects panel approach of Kock (2013) and Kock (2016) to use the conventional LASSO as an initial
estimator, and subsequently take the inverse of the initial LASSO coefficients as the penalty weights in
the second step of the adaptive LASSO. The least squares objective function for the adaptive LASSO
implementation in our setting is given by:

arg min
c,g,τ

1

NT

N∑
i=1

T∑
t=1

(yi,t − ci − gt −
N∑
j=1

T∑
s=2

τj,s1{i=j,t≥s})
2 + λ

N∑
j=1

T∑
s=2

vj,s|τj,s| (48)

where the second term denotes the penalty term on the break coefficients τ with tuning parameter λ
and penalty weights v corresponding to the inverse of the coefficients in an initial LASSO estimator.
The tuning parameter λ can be chosen using cross-validation or information criteria. Closely related to
our work, albeit not focused on fixed effects, Qian & Su (2016a) use the adaptive LASSO to estimate
common breaks across individuals. Okui & Wang (2021) show that the adaptive LASSO – albeit using a
fused structure – can further be used to estimate breaks that are heterogeneous across groups. However,
they do not focus on breaks in fixed effects or treatment evaluation. Larger breaks, i.e. larger treatment
effects, are more likely to be retained in the final model – akin to the gets approach in section 3.1.1 –
potentially complicating inference on the final retained model. Post-selection inference has received a
fair amount of attention in the LASSO literature. Simple data-splitting approaches (such as Cox 1975)
are not feasible in our setting as the treatment variables only apply to a subset of observations. Lee et al.
(2016) propose a post-selection inference correction for the LASSO. Alternatively, Zhao et al. (2021)
show that the naive approach of re-estimating an OLS model post-selection can perform surprisingly
well in many settings.

3.2 Embedding Known Interventions

There are two ways in which break detection to identify treatment can be implemented: either as an
agnostic way to detect fully unknown treatment assignment and timing, or as a robustness check em-
bedding known treatment and searching for additional previously-unknown interventions. Above we
outlined the case where we detect treatment as a purely agnostic data-driven approach to identify inter-
ventions without any prior knowledge of their occurrence. While the approach is agnostic and any unit
may be treated at any point in time, a potential downside is a loss in power if treatment assignment and
timing is known and there are multiple treated units with a homogeneous treatment effects, since each
treated unit would have to be identified individually.

If treatment assignment and timing is known for a particular intervention then break detection can be
adapted as a robustness check for additional unknown treatment in conventional TWFE difference-in-
differences models. In this case we force the known treatment dummy (or dummies for interactions)
to be included in the model, and select over additional treatment indicators. This corresponds to the
theory-embedding approach of Hendry & Johansen (2015) where fixed regressors are embedded in a
wider information set that we select over.

Then selection takes place over the break variables to detect additional treatment (omitting the break
variables perfectly coinciding with known treatment dummies), known treatment dummies remain in
the model without being selected over. This allows additional unknown treatment to be detected, while
the coefficient on the forced (not-selected-over) break variable yields an estimate of the conventional
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treatment effect in a TWFE panel. It is worth highlighting that we do not necessarily need to allow for a
break at every point in time (or individual). If there is a strong reason that the break should be localised
in particular time periods (or among particular individuals), then only those could be included in the
candidate set of break variables selected-over.

3.3 Ex-Post Attribution of Detected Events

Having identified treatment as structural breaks the remaining challenge is then to attribute the detected
effects to possible causes. Much of the difference-in-differences TWFE literature is dedicated to justi-
fying that specific known interventions were exogenous (or as-if randomly assigned). Similar to such
subject-specific justifications, the ex-post attribution of events to possible causes will require subject-
specific knowledge. Ultimately, in absence of a randomised experiment, making the case for a known
intervention to be exogenous is comparable to searching for a potential cause of a detected effect. Par-
ticularly, once a potential cause of a detected effect has been identified, we could have simply estimated
a conventional difference-in-differences model using the ‘known’ intervention. Thus, in the proposed
reverse causal approach we expect that much of the discussion will be dedicated to arguing that a partic-
ular detected break coincides with a particular event that was discovered after the effect was observed.
Naturally there may be many such events that took place and it can be difficult to attribute the observed
effect to that single event. However, the same challenge applies in ‘known’ treatment evaluation – treat-
ment has to occur in isolation without other events taking place at the same time affecting the treated
units. So while the search for causes is different than arguing that a cause was unique, subject-specific
knowledge will be necessary in both settings.

4 Illustrative Application:
Detecting the Impacts of Terrorism on GDP per Capita

We demonstrate our break detection approach to identify unknown treatment assignment and timing
using a well-known dataset on Spanish regional GDP per capita (see Abadie & Gardeazabal, 2003). We
purposely choose a well-known example to illustrate our methods. We also provide a policy-focused
application with novel data in our closely-related papers in Koch et al. (2022) and Stechemesser et
al. (2024). The dataset for our illustrative application here spans all of mainland Spain’s 15 regions
(where we exclude the Canary and Balearic Islands) over 31 years from 1965 to 1995 for a total of 465
region-year observations. In their seminal paper, Abadie & Gardeazabal (2003) used a forward causal
approach to study the effect of ETA terrorism on regional economic output. The authors find a substantial
reduction in regional GDP in response to local terrorism introducing synthetic control methods. Here we
ask the reverse causal question: what affected regional GDP per capita in the Basque Country (or wider
Spain)? We show that the “treatment” taking the form of ETA terrorism (alongside a number of other
previously unidentified treatments) can be detected without prior knowledge of its occurrence using our
proposed break detection approach.

To illustrate our methods, we first consider a simple TWFE panel setting with two regions (the Basque
Country and Madrid) where we search for breaks to detect treatment in GDP per capita.4 We then expand
this into a multi-region panel of mainland Spain to assess breaks in a wider context. Our results show that
we can detect the effect of ETA terrorism without prior knowledge of its occurrence and obtain treatment
effect estimates that are near-identical to a known-treatment model. Our break detection approach also

4For completeness we also show that a simple time series model of Basque GDP per capita is unable to identify ETA
terrorism impacts due to the lack of control groups – see Supplementary Material 6.3).
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provides evidence that the treatment effects of GDP impacts of ETA terrorism were transitory and are
no longer detectable post-1990. In addition, in the panel with more than two regions we also detect
breaks which we attribute to an industrial crisis and increased autonomy following the Franco era in
other regions.

4.1 Detecting Treatment in a Panel with Two Regions

We first consider a simple panel with two regions: the Basque country and Madrid (N = 2, T = 31,
NT = 62). For comparison, we initially estimate the forward causal ‘infeasible’ model of log GDP
per capita (controlling for log investments Inv similar to Abadie & Gardeazabal 2003) using a TWFE
estimator with a known intervention of Basque terrorism to provide a baseline relative to our break
detection approach. We then demonstrate that we can directly detect the terrorism ‘treatment’ without
prior knowledge using our reverse causal approach.

As a baseline, consider a TWFE estimator with a ‘known’ intervention of ETA terrorism. We estimate
baseline models first allowing for time-varying treatment effects using interactions in (49), then assum-
ing time-invariant treatment effects in (50) specified as a dummy variable for the Basque region in the
‘post-treatment’ period, defined here as 1979 onwards, as Abadie & Gardeazabal (2003) found that the
impact of terrorism was notable in GDP per capita from the end of the 1970s.

‘Known’ Treatment (fully time-varying treatment effects):

log(GDPpci,t) = αi + ϕt +

1995∑
s=1979

diτs1{t=s} + β1log(Inv)i,t + ui,t (49)

where di = 1{i=Basque}

‘Known’ Treatment (time-constant treatment effects):

log(GDPpci,t) = αi + ϕt + di,tτ + β1log(Inv)i,t + ui,t (50)

where di,t = 1{i=Basque,t≥1979}

Estimation results for the ‘known’ baseline models are shown in Tables 1 and 2, under the columns
“Known TWFE”. The results of the known baseline show an approximate 5% reduction in GDP per
capita in the Basque country relative to Madrid in response to ETA terrorism in this simple two-region
model. This result is similar across the time-varying model (see equation 20) (where the estimated ATT
is given by the average of the impulse coefficients) as well as the piece-wise constant treatment effects
model (see equation 25). Specifically, the ATT across impulses in the known baseline in (49) is -0.0496
(se=0.0197), and the time-constant estimate given by the coefficient in (50) on the known step-function
is -0.0495 (se=0.006).

Now suppose the “treatment” of ETA terrorism in the Basque country was unknown, and we approached
the data with our reverse causal question of ‘what affected GDP per capita? We demonstrate how
treatment interventions can be detected without prior knowledge of their occurrence.

4.1.1 Unknown Treatment with Fully Time-Varying Effects

We now estimate a model allowing for the potential treatment of any unit at any point in time first
using impulse dummies capturing time-varying treatment and select over them using the ‘gets’ selection
algorithm (we consider the LASSO for the piece-wise constant setting below). The model is saturated
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with a full set of impulse dummies in (51) which are selected over at a target level of significance γc.
We consider three different target significance levels, γc = 0.05 as well as 0.025 and 0.01 to illustrate
the impact of the calibration choice on treatment detection.

‘Unknown’ Treatment:

log(GDPpci,t) = ci + gt +
2∑

j=1

1995∑
s=1966

τj,s1{i=j,t=s} + β1log(Inv)i,t + ui,t (51)

The resulting detected impulses, which we interpret as unit-specific time-varying treatment effects, are
shown in Figure 2 (for γc = 0.05) and Table 1 (for all three values of γc). We detect the treatment of
Basque terrorism without prior knowledge of its occurrence as individual impulses in the Basque region
from 1980 to 1990. Each coefficient provides an estimate of the unit- and time-specific treatment effect.
We can easily compute our estimates of the ATT by taking the mean of the impulses over time. Standard
errors for the ATT are also straight-forward to compute as impulses are orthogonal. Computing the ATT
over the time period from 1980 to 1990 from the model with γc = 0.05 yields an estimate of the ATT
of -0.059 (se=0.016) which is nearly identical (and not significantly different) to the known-treatment
baseline estimate of -0.0496 (se=0.0197). The fact that the ATT using detected impulses is marginally
larger than the known baseline ATT can be explained by the fact that the impulses are only retained up to
1990 while the ‘known’ baseline time-varying treatment considers treatment effects up until the end of
the sample in 1995. Indeed, we only detect treatment breaks up until 1990, suggesting that the impacts
of ETA terrorism on GDP were transitory and no longer detectable post-1990. This is consistent with the
known-treatment baseline which finds predominantly insignificant time-varying treatment effects after
1990.

Varying γc, we successfully detect the intervention at relatively loose levels of significance γc = 0.05

or γc = 0.025. The loss of power for more conservative levels of the target false positive rate becomes
apparent when we set γc = 0.01, where we do not detect any treatment as impulse dummies coinciding
with ETA terrorism. However, this reduction in power can be tackled by specifying piece-wise constant
treatment effects using step functions as we demonstrate in the following section 4.1.2. Note that in this
N=2 panel, the treatment effects are relative to the single control region and one could achieve the same
detected treatment if Basque country was selected as the ‘control’, in which case the treatment effects
would be detected for Madrid and opposite-signed. We would then interpret them as the effect of the
absence of terrorism.
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(identifying time-varying treatment effects).
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Table 1: Detecting Fully-Time-Varying Treatment: Two-Region Panel Model

Dependent Variable: log(GDPpc) (Basque & Madrid)
Unknown Treatment Known Treatment

Model: gets (γc = 0.05) gets (γc = 0.025) gets (γc = 0.01) ‘Known’ TWFE

Variables
log(Invest) 0.1048∗∗∗ 0.0777∗ -0.0234 -0.0638

(0.0329) (0.0376) (0.0534) (0.0563)
τ : i=Basq.,t=1965 -0.0657∗∗∗ -0.0559∗∗∗ -0.0156

(0.0163) (0.0193) (0.0320)
τ : i=Basq.,t=1966 -0.0352∗∗

(0.0151)

τ : i=Basq.,t=1979 -0.0348
(0.0213)

τ : i=Basq.,t=1980 -0.0514∗∗∗ -0.0463∗∗ -0.0474∗∗

(0.0143) (0.0173) (0.0183)
τ : i=Basq.,t=1981 -0.0859∗∗∗ -0.0783∗∗∗ -0.0664∗∗∗

(0.0151) (0.0181) (0.0189)
τ : i=Basq.,t=1982 -0.0661∗∗∗ -0.0622∗∗∗ -0.0699∗∗∗

(0.0142) (0.0172) (0.0185)
τ : i=Basq.,t=1983 -0.0679∗∗∗ -0.0621∗∗∗ -0.0598∗∗∗

(0.0145) (0.0175) (0.0183)
τ : i=Basq.,t=1984 -0.0743∗∗∗ -0.0652∗∗∗ -0.0455∗∗

(0.0158) (0.0189) (0.0199)
τ : i=Basq.,t=1985 -0.0630∗∗∗ -0.0549∗∗∗ -0.0401∗

(0.0154) (0.0184) (0.0193)
τ : i=Basq.,t=1986 -0.0615∗∗∗ -0.0557∗∗∗ -0.0530∗∗

(0.0145) (0.0175) (0.0183)
τ : i=Basq.,t=1987 -0.0514∗∗∗ -0.0492∗∗ -0.0655∗∗∗

(0.0142) (0.0173) (0.0194)
τ : i=Basq.,t=1988 -0.0475∗∗∗ -0.0456∗∗ -0.0632∗∗∗

(0.0142) (0.0173) (0.0196)
τ : i=Basq.,t=1989 -0.0483∗∗∗ -0.0451∗∗ -0.0561∗∗

(0.0142) (0.0172) (0.0188)
τ : i=Basq.,t=1990 -0.0342∗∗ -0.0395∗

(0.0142) (0.0186)
τ : i=Basq.,t=1991 -0.0328

(0.0200)
τ : i=Basq.,t=1992 -0.0354∗

(0.0194)
τ : i=Basq.,t=1993 -0.0443∗

(0.0207)
τ : i=Basq.,t=1994 -0.0332

(0.0237)
τ : i=Basq.,t=1995 -0.0046

(0.0214)

Fixed-effects
Region Yes Yes Yes Yes
Year Yes Yes Yes Yes

Fit statistics
Observations N=2, T=31 N=2, T=31 N=2, T=31 N=2, T=31
Within R2 0.87 0.79 0.023 0.84

Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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4.1.2 Unknown Treatment with Piece-Wise Constant Effects

Treatment effects may be piece-wise constant and thus detected with greater likelihood (due to the higher
power of step-functions). To illustrate this, we estimate a TWFE panel (52) saturated with a full set of
step-functions denoting potential treatment in either region (Basque or Madrid) at any point in time:

‘Unknown’ Treatment:

log(GDPpci,t) = ci + gt +
2∑

j=1

1995∑
s=1966

τj,s1{i=j,t≥s} + β1log(Inv)i,t + ϵi,t (52)

We select over treatment functions using ‘gets’ at two target levels of γc = 0.001 and γc = 0.01 as
well as using the adaptive LASSO where we penalise the possible treatment coefficients τ , with penalty
weights chosen using the simple LASSO as an initial estimator, and the tuning parameter selected using
cross-validation.

Table 2 and Figure 3 shows the results of break detection. The adaptive LASSO estimates are reported
using the ‘naive’ approach of re-estimating the selected model using OLS (see e.g. Zhao et al., 2021).
Detecting treatment using ‘gets’ at γc = 0.001 results in a single treatment indicator being retained
for the Basque Country from 1979 onwards. The resulting selected model is identical (in absence of
any bias-correction due to selection) to the TWFE estimator with known treatment intervention im-
posed, with the estimated coefficient on the retained break variable of -0.0496 (se=0.0197) matching
the estimated treatment effect in the TWFE difference-in-differences model. In other words – with-
out knowing that treatment occurred – we are able to detect the treatment intervention and estimate
a model effectively identical to the known intervention panel. Similarly, the adaptive LASSO is able
to identify treatment (detecting a negative intervention in Basque country in 1980), with the estimated
‘naive’ post-LASSO treatment effect near identical to the ‘known’ imposed intervention in 1979. The
adaptive LASSO further detects additional earlier breaks which is unsurprising as it can be often less
conservative than ‘gets’ with low levels of γc. Relaxing the target level of γc to a less conservative level
of 0.01 results in additional breaks being detected which can be interpreted as time-varying treatment
effects: the negative break in 1981 suggests that the initial impact of ETA terrorism became larger in the
early 1980s, however, the opposite-signed break in 1990 provides evidence of the transitory nature of
the impact. Consistent with our results from the fully-time-varying specification (and known baseline),
treatment effects post-1990 are closer to zero (see section 4.1.1).

Overall, both ‘gets’ and the adaptive LASSO implementation of our proposed break detection approach
detect the ‘treatment’ without prior knowledge of its occurrence. Break detection estimates to detect
treatment suggest a roughly 5% reduction in GDP per capita in response to terrorism in the Basque
region relative to Madrid as the control region, which is identical to the known intervention TWFE
estimator. Further, it is worth noting that the break detection approach suggests a reduction in GDP per
capita from around 1979/1980 onwards, which is consistent with Abadie and Gardeazabal’s finding that
GDP per capita reductions occurred with a lag relative to the onset of terrorism in the mid 1970s.

Thus, not only are we able to detect treatment without prior knowledge on which regions were treated
and when treatment occurred, but the estimated break dates also provide insights into the lagged onset
of the economic impacts of terrorism.
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Table 2: Detecting Piece-Wise Constant Treatment: Two-Region Panel Model

Dependent Variable: log(GDPpc) (Basque & Madrid)
Unknown Treatment Known Treatment

Model: gets (γc = 0.001) gets (γc = 0.01) Adapt. LASSO ‘Known’ TWFE

Variables
log(Invest) -0.1065∗∗∗ -0.0540∗ -0.0624∗ -0.1065∗∗∗

(0.0294) (0.0314) (0.0320) (0.0294)
τ : Break (i=Basq, t ≥ 1966) 0.0324

(0.0190)

τ : Known ETA (i=Basq, t ≥ 1979) -0.0495∗∗∗

(0.0063)
τ : Break (i=Basq, t ≥1979) -0.0495∗∗∗ -0.0401∗∗∗

(0.0063) (0.0115)
τ : Break (i=Basq, t ≥1980) -0.0471∗∗∗

(0.0065)
τ : Break (i=Basq, t ≥1981) -0.0176

(0.0119)
τ : Break (i=Basq, t ≥1990) 0.0277∗∗∗

(0.0092)

Fixed-effects
Region Yes Yes Yes Yes
Year Yes Yes Yes Yes

Fit statistics
Observations N=2, T=31 N=2, T=31 N=2, T=31 N=2, T=31
Within R2 0.69 0.77 0.671 0.69

Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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4.2 Detecting Treatment in a Panel with Multiple Regions

We repeat the above analysis for a panel covering all of mainland Spain using ‘getspanel’. We now
include all N = 15 regions of mainland Spain over T = 31 years (for a total sample size of NT = 465).
Just as before, we compare the detected treatment in this larger panel to the benchmark of a known
intervention by imposing the ‘treatment’ as a dummy variable for the Basque region from 1979 onwards
in a TWFE estimator. The ‘known treatment’ baseline yields an estimated treatment effect of -0.155
(se=0.018) relative to the control regions in wider Spain (see Table 3).5

Our break detection results using gets at γc = 0.001 show that even in this more general setting we
are able to detect the treatment of ETA terrorism through the impacts on GDP in the Basque Country
without prior knowledge of its occurrence (see Figure 4 and Table 3). The ETA treatment is detected
in 1978 (close to the imposed intervention in the known TWFE estimator in 1979) with an estimated
treatment effect of -0.156 (se=0.012) which is near identical to the ‘known treatment’ benchmark.

In addition to the ETA break in 1978, we also detect a small number of possible treatment effects through
breaks in the fixed effects of other regions.6 It is worth noting though that the break associated with the
ETA ‘treatment’ is the single largest break in magnitude compared to all detected breaks. Given the set
of detected effects (captured through breaks) for some of the regions, the next step of our approach (see
section 3.3) is to investigate the relevant literature for potential causes.

A brief review of the literature on Spanish economic history suggests that the positive breaks (i.e. pos-
itive treatment effects on GDP per capita) in Extremadura, Galicia, and Rioja, may correspond to the
increased autonomy of the regions awarded in the post-Franco era. The negative break in Madrid in 1970
coincides with an industrial crisis that hit Madrid disproportionally relative to other regions (Rodrı́guez-
Pose & Hardy 2021, and Tobı́o 1989).

The fact that ex-post attribution is not always straightforward is highlighted by the fact that we have yet
to identify likely causes for the positive break in Castilla-La Mancha in 1972 (though it is worth noting
that the film adaptation of the highly popular musical “Man of la Mancha” was released in that year),
and the negative breaks in Asturias (in 1986) and Madrid (in 1990).

5This estimate in the known benchmark and the detected break setting is larger than the two-region panel because the
control group is different. The two-region panel only included Madrid as a control region)

6To control for outlying observations we also combine our selection over step functions with selection over impulse dum-
mies, where impulses could capture outliers or can also be interpreted as single-period time-varying treatment indicators. Only
a single outlying observation is identified: Madrid, 1965.
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Table 3: Detecting Piece-Wise Constant Treatment: 15-Region Panel Model

Dependent Variable: log(GDPpc)
Unknown Treatment Known Treatment

Model: gets (γc = 0.0001) ‘Known’ TWFE

Variables
log(Invest) 0.1171∗∗∗ 0.1377∗∗∗

(0.0121) (0.0175)

τ : Break (i=Basq, t ≥1978) -0.1560∗∗∗

(0.0120)
τ : Known ETA (i=Basq, t ≥1979) -0.1553∗∗∗

(0.0182)

τ : Break: (i=Castilla-La Mancha, t ≥ 1972) 0.1169∗∗∗

(0.0143)
τ : Break: (i=Extremadura, t ≥ 1987) 0.1350∗∗∗

(0.0127)
τ : Break: (i=Galicia, t ≥ 1976) 0.0980∗∗∗

(0.0121)
τ : Break: (i=Madrid, t ≥ 1970) -0.1256∗∗∗

(0.0176)
τ : Break: (i=Madrid, t ≥ 1990) -0.0903∗∗∗

(0.0150)
τ : Break: (i=Princip. De Asturias, t ≥ 1986) -0.1220∗∗∗

(0.0123)
τ : Break: (i=La Rioja, t ≥ 1981) 0.0796∗∗∗

(0.0117)
τ : Impulse: (i=Madrid, t = 1965) 0.0914∗∗

(0.0356)

Fixed-effects
Region Yes Yes
Year Yes Yes

Observations N=15, T=31, NT=465 N=15, T=31, NT=465
Within R2 0.71 0.29

Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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5 Conclusion

We operationalise the modelling of reverse causal questions by searching for structural breaks in fixed
effects panel models identifying previously unknown treatment effects which can subsequently be at-
tributed to potential causes. We show that the two-way fixed effects estimator, which identifies heteroge-
neous treatment effects through interactions, can be nested as a special case of impulse- or step-dummy
saturated models – a subset of which identifies underlying treatment effects.

We demonstrate the feasibility of detecting previously unknown treatment assignment and timing by
using two machine learning methods suitable for selection over more candidate variables than observa-
tions (here using ‘gets’ and the adaptive LASSO, though many other approaches such as bayesian model
selection would also be feasible).

Our application to the economic impacts of terrorism in Spain demonstrates that we can detect the
effects of ‘treatment’ (taking the form of terrorist activity) on GDP per capita without prior knowledge
of its occurrence. The estimated treatment effects, when the assignment of treatment and its timing is
unknown are near identical to imposing the same treatment as a known intervention a-priori. More
broadly, our proposed approach is modular and allows for the detection of structural breaks in fixed
effects panels with flexible choices for the machine learning algorithms employed. Crucially, using
machine learning this allows for the detection of effective policies without prior knowledge of their
occurrence or effectiveness. When using gets or the adaptive LASSO, the approach can be readily
applied using our freely-available open-source R-packages ‘gets’ and ‘getspanel’.
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6 Supplementary Material

6.1 Identifying Heterogeneous Treatment Effects in Staggered Treatment

Here we briefly summarise the results from Wooldridge (2021), deriving equation (31) to identify treat-
ment effects when treatment is staggered. We assume there is no anticipation of treatment for each
r = q, q + 1, ..., Q:

E[yt(r)− yt(∞)|d] = 0, for t < r. (53)

We also require a common trend assumption that the trend in absence of treatment is common regardless
of state of treatment:

E[yt(∞)− y1(∞)|dq, ...dQ] = E[yt(∞)− y1(∞)] = θt, for t = 2, ..., T (54)

and we assume at least one untreated group. The observed outcome in any period is given by:

yt = yt(∞) + dqtet(q) + ...+ dQtet(Q) (55)

where no anticipation implies that for the pre-treatment period (t < q):

E[yt|d] = E[yt(∞)|d] (56)

and for t ≥ q:
E[yt|d] = E[yt(∞)|d] + dqτq,t + ...+ dQτQ,t (57)

We then write the never treated outcome yt(∞) as an initial outcome and change relative to the initial
period:

yt(∞) = y1(∞) + gt(∞) (58)

By the common trend assumption E[gt(∞)|d] = θt:

E[yt(∞)|d] = E[y1(∞)|d] + E[gt(∞)|d] = η + λqdq + ...+ λQdQ + θt (59)

which subsequently allows us to write the expected outcome as equation (31).

If we are interested in treatment effects of units treated at one point relative to those treated at a different
point in time, as in Wooldridge (2025), we can define a sub-group ATT for those treated at r compared
to for example one period later at r + 1 as

τ(r:r+1) = E[yt(r)− yt(r + 1)|dr = 1] (60)

This can be expressed as the difference in treatment effects relative to the untreated group:

yt(r)− yt(r + 1) = [yt(r)− yt(∞)]− [yt(r + 1)− yt(∞)] (61)

Thus
τ(r:r+1) = τr,t − E[yt(r + 1)− yt(∞)|dr = 1] (62)

which under no anticipation and parallel trends simplifies to:

τ(r:r+1) = τr,t − τr+1,t (63)

and which is matched by the difference in coefficients τ̂ obtained post-break detection on treatment
dummies (step-functions or impulses).
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6.2 Simulation Study

Here we investigate the properties of detecting treatment in our reverse causal setting using ‘gets’ and
the adaptive LASSO. For the simulations we focus on detecting piece-wise constant treatment in the
form of step-functions. Future work will expand simulations to also include fully-time-varying effects
through impulse indicators.

We vary the treatment effect size σ as well as the number of treated units n. We compare the detection
of unknown treatments against the ‘known treatment’ standard TWFE estimator for a single treated unit
as well as multiple treated units. We then consider the case where we impose a known treatment while
searching for additional treatment as described in section 3.2.

We simulate the DGP in (23) with errors drawn from the standard normal distribution and evaluate the
performance of treatment detection as follows. For ‘gets’ we select over the full set of break functions
using varying target levels of significance (γc). We use cross-validation to determine the penalty level
for the adaptive LASSO. To measure the false positive rate of detection we compute the proportion
of spuriously retained breaks (out of all possible spurious breaks). To measure whether we correctly
identify treatment, we classify the proportion of correctly identified treated observations as those for
which the detected breaks include the true treatment effect within a (1− γc) confidence interval.

Figure 5 shows the false positive rate together with the correctly classified proportion of treated obser-
vations for a single treated unit when varying the treatment magnitude (as a function of the standard
deviation of the error term). Note that for a treatment effect size of 0 no treatment is present and hence
no treatment should be identified – in this case therefore the rejection frequency yields a measure of the
false-positive rate. Results show that treatment detection using ‘gets’ (red, solid) is close to the bench-
mark of a known treatment estimated using a conventional TWFE estimator (blue solid). The false
positive rate is stable around the chosen level of significance of selection (red dashed). The adaptive
LASSO (green solid) using cross-validation to choose the penalty factor also achieves a high level of
accurate classification, however, is consistently lower than ‘gets’ for all significance levels considered.
The adaptive LASSO using cross-validation also exhibits an erratic false positive rate (green dashed).

We increase the number of treated units from one to two and then five in our simulations (with iden-
tical treatment timing and homogeneous treatment effects) with results shown in Figures 6 and 7. As
expected, as we increase the number of treated units, the correct classification (detection of treatment)
falls relative to the known treatment case (using a single dummy variable) as our treatment detection
approach has to identify a separate treatment dummy per treated unit. Nevertheless, the correct rejection
frequency remains high given that no prior information about treatment assignment or timing was used.

Finally, we consider the costs of searching for additional treatment when there is a single known treat-
ment that has been imposed from the outset (i.e. forced in the model and not selected over; see section
3.2).

Figure 8 shows the root-mean-squared error (RMSE) of the estimated treatment effect on the known
treatment dummy when selecting over additional break variables relative to the simple TWFE estimator
(without selection), together with the false-positive rate of detected treatment (gauge). The DGP only
contains the single known treatment, with no other unknown treatment occurring. Thus this provides an
assessment of the costs of searching for additional breaks when a known treatment is embedded. The
results in Figure 8 show that searching for additional treatment when a known treatment is imposed,
increases the RMSE on the estimated treatment effect for known treatment, however, for increasingly
conservative selection significance levels this cost shrinks close to zero. This can be seen as an insurance
cost – controlling for possible treatment (or breaks) that have been omitted from a standard model
increases the RMSE of the known treatment indicator while providing robustness against omitted breaks.
In other words, searching for additional breaks (i.e. treatment) lowers the precision on a known forced
treatment somewhat, but the degree to which the RMSE increases can be easily controlled by choosing
conservative levels of selection when using ‘gets’. For ‘gets’, as Figure 8 shows, the false positive rate
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Figure 5: Simulation: Detecting treatment with one unknown treated units using ‘gets’ (SIS) and the
adaptive LASSO compared to a ‘known’ treatment with N = 10
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Figure 6: Simulation: Detecting treatment with two unknown treated units using ‘gets’ (SIS) and the
adaptive LASSO compared to a ‘known’ treatment with N = 10
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Figure 7: Simulation: Detecting treatment with five unknown treated units using ‘gets’ (SIS) and the
adaptive LASSO compared to a ‘known’ treatment with N = 10

(gauge) again is stable around the specified nominal level of significance. Such control is more difficult
to achieve when using the LASSO due to not targeting the false-positive rate.
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Figure 8: Top: RMSE of estimated ‘known’ single treatment effect when searching for additional treat-
ment relative to known TWFE estimator. Bottom: False positive rate of detected breaks.
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6.3 Simple Time Series Approach

We estimate a simple time series model of Basque GDP per capita in (64) and demonstrate that in
absence of control groups, we are unable to detect the impact of ETA Basque terrorism a-priori. We
model the log of GDP per capita as a function of log investment (one of the original control variables
in Abadie and Gardeazabal), while searching for structural breaks in the intercept using step-indicators
with ‘gets’ at a conservative target significance level of γc = 0.001:

SIS – Time Series for Basque Country only:

log(GDPpc)t = β0 + β1log(Inv)t +
1995∑

s=1966

τs1{t≥s} + ϵt (64)

Estimation results of this time series model are shown in Table 4 and Figure 9. While multiple breaks are
found, the negative impact of ETA terrorism on GDP per capita in the Basque region is not detectable
due to the lack of control regions. There are no detected breaks with negative coefficients during the
period that ETA was active.

Basque Country(PaisVasco)

1970 1980 1990

1.7

1.8

1.9

2.0

2.1

2.2

Time Series Model (no Control Regions)
Allowing for step-shifts

Observed

Model Fit

Detected 
Step-Shifts 

No step-shift 
coinciding with ETA 

due to lack of 
control regions

(+) (+) (+) (+)Sign of shift:

Figure 9: Simple Time Series Model of Basque GDP per Capita – Breaks detected using ‘gets’ and
γc = 0.001.
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Table 4: Detecting Breaks in a Simple Time Series Model (Basque Country)

Dependent Variable: log(GDPpc)
Model: Time Series

Variables
Constant 0.5367

(0.5008)
log(Invest) 0.3788∗∗

(0.1556)
Break (i=Basq., t ≥ 1971) 0.1663∗∗∗

(0.0321)
Break (i=Basq., t ≥ 1975) 0.1308∗∗∗

(0.0463)
Break (i=Basq., t ≥ 1980) 0.0536

(0.0417)
Break (i=Basq., t ≥ 1988) 0.1737∗∗∗

(0.0392)

Fit statistics
Observations 31
R2 0.92

Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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