Skip to contents

Methods and extraction functions for 'larch' objects

Usage

# S3 method for class 'larch'
coef(object, ...)
  # S3 method for class 'larch'
fitted(object, ...)
  # S3 method for class 'larch'
logLik(object, ...)
  # S3 method for class 'larch'
model.matrix(object, response=FALSE, as.zoo=TRUE, ...)
  # S3 method for class 'larch'
nobs(object, ...)
  # S3 method for class 'larch'
plot(x, col=c("red","blue"), lty=c("solid","solid"),
    lwd=c(1,1), ...)
  # S3 method for class 'larch'
print(x, signif.stars=TRUE, verbose=FALSE, ...)
  # S3 method for class 'larch'
residuals(object, ...)
  # S3 method for class 'larch'
summary(object, ...)
  # S3 method for class 'larch'
toLatex(object, ...)
  # S3 method for class 'larch'
vcov(object, ...)

Arguments

object

an object of class 'larch'

x

an object of class 'larch'

response

logical. If FALSE (default), the returned object does not contain the response (log(e^2)) used in the estimation

as.zoo

logical. If TRUE (default), the returned object is of class zoo

col

a character vector of length two with the colours of actual (default=blue) and fitted (default=red) lines

lty

types of actual (default=solid) and fitted (default=solid) lines

lwd

widths of actual (default=1) and fitted (default=1) lines

signif.stars

logical. If TRUE, then p-values are additionally encoded visually, see printCoefmat

verbose

logical. If TRUE, and if x is the results of GETS modelling, then additional information pertaining to the GETS modelling is printed

...

additional arguments

Value

coef:

a vector containing the parameter estimates

fitted:

a zoo object with fitted values

logLik:

the log-likelihood (normal density)

model.matrix:

the model matrix (see model.matrix) of class zoo (default) of the model

nobs:

the number of observations

plot:

a plot of the fitted values and the residuals

print:

a print of the estimation results and, if verbose=TRUE and x is the result of GETS modelling, additional information pertaining to the GETS modelling

residuals:

a zoo object with the standardised residuals

summary:

a print of the items in the larch object

toLatex:

a LaTeX print of the estimation results (equation format)

vcov:

variance-covariance matrix

Author

Genaro Sucarrat, https://www.sucarrat.net/

See also

Examples

##simulate some data:
set.seed(123)
e <- rnorm(40)
x <- matrix(rnorm(40*2), 40, 2)

##estimate a log-ARCH(3)-X model:
mymod <- larch(e, arch=1:3, vxreg=x)

##print results:
print(mymod)
#> 
#> Date: Mon Apr  7 09:08:19 2025 
#> Dependent var.: e 
#> Variance-Covariance: Robust (default) 
#> No. of observations: 37 
#> Sample: 4 to 40 
#> 
#> Log-variance equation:
#> 
#>             coef std.error  t-stat p-value
#> vconst -0.278661  0.358593 -0.7771  0.4666
#> arch1  -0.036968  0.145774 -0.2536  0.8083
#> arch2  -0.073811  0.137326 -0.5375  0.6103
#> arch3   0.175974  0.158168  1.1126  0.3085
#> vxreg1 -0.012931  0.437286 -0.0296  0.9774
#> vxreg2  0.436216  0.299160  1.4581  0.1951
#> 
#> Diagnostics and fit:
#> 
#>                    Chi-sq df p-value
#> Ljung-Box AR(1)   0.77637  1  0.3783
#> Ljung-Box ARCH(4) 4.59786  4  0.3311
#>                         
#> Log-lik.(n=37): -46.3649

##LaTeX print of the estimation results (equation format):
toLatex(mymod)
#> % Date: Mon Apr  7 09:08:19 2025 
#> % LaTeX code generated in R 4.4.3 by the gets package
#> % Note: The {eqnarray} environment requires the {amsmath} package
#> \begin{eqnarray}
#>   \widehat{\ln\sigma_t^2} &=&  - \underset{(0.3586)}{0.2787} - \underset{(0.1458)}{0.0370}arch1 - \underset{(0.1373)}{0.0738}arch2 + \underset{(0.1582)}{0.1760}arch3 - \underset{(0.4373)}{0.0129}vxreg1 + \underset{(0.2992)}{0.4362}vxreg2 \\[2mm] 
#>    && \qquad LogL=-46.3649 \qquad T =  \nonumber \\ 
#> \end{eqnarray}

##plot the fitted vs. actual values, and the standardised residuals:
plot(mymod)


##extract coefficient estimates (automatically determined):
coef(mymod)
#>      vconst       arch1       arch2       arch3      vxreg1      vxreg2 
#> -0.27866107 -0.03696848 -0.07381074  0.17597376 -0.01293074  0.43621622 

##extract the fitted values:
fitted(mymod)
#>         4         5         6         7         8         9        10        11 
#> 0.9556512 0.4598392 1.7852426 0.6273444 0.4381713 0.8657922 0.9455513 1.4182209 
#>        12        13        14        15        16        17        18        19 
#> 0.9352712 0.6618728 0.7553297 1.2914541 0.5983542 0.9652411 1.1520176 0.8817715 
#>        20        21        22        23        24        25        26        27 
#> 0.3505427 0.7806096 0.8359160 0.5811995 0.8428103 0.3022592 0.8091556 0.4929142 
#>        28        29        30        31        32        33        34        35 
#> 0.2904249 0.8978886 1.3507031 0.2955337 1.0958847 0.4957143 0.6667783 0.6396768 
#>        36        37        38        39        40 
#> 0.8471883 0.8041041 0.5988265 0.6125972 0.6483898 

##extract the standardised residuals:
residuals(mymod)
#>           4           5           6           7           8           9 
#>  0.07212588  0.19065769  1.28360666  0.58192760 -1.91112723 -0.73817080 
#>          10          11          12          13          14          15 
#> -0.45831390  1.02787074  0.37205664  0.49261712  0.12735369 -0.48911525 
#>          16          17          18          19          20          21 
#>  2.31006528  0.50673513 -1.83227334  0.74689649 -0.79854448 -1.20860008 
#>          22          23          24          25          26          27 
#> -0.23841040 -1.34581896 -0.79395849 -1.13688756 -1.87508132  1.19329540 
#>          28          29          30          31          32          33 
#>  0.28459830 -1.20111141  1.07883117  0.78447494 -0.28186738  1.27135927 
#>          34          35          36          37          38          39 
#>  1.07539941  1.02723575  0.74817370  0.61771632 -0.08000595 -0.39091374 
#>          40 
#> -0.47250181 

##extract variance-covariance matrix:
vcov(mymod)
#>              vconst        arch1         arch2         arch3       vxreg1
#> vconst  0.128588632  0.020657682  0.0197850192  0.0361442207 -0.071859423
#> arch1   0.020657682  0.021250091 -0.0046833399  0.0049903516  0.009722179
#> arch2   0.019785019 -0.004683340  0.0188582987  0.0004076003 -0.013398161
#> arch3   0.036144221  0.004990352  0.0004076003  0.0250172580 -0.031623995
#> vxreg1 -0.071859423  0.009722179 -0.0133981611 -0.0316239946  0.191219036
#> vxreg2  0.007294587  0.003913319  0.0040405250  0.0080343014  0.043590638
#>             vxreg2
#> vconst 0.007294587
#> arch1  0.003913319
#> arch2  0.004040525
#> arch3  0.008034301
#> vxreg1 0.043590638
#> vxreg2 0.089496879

##extract log-likelihood (based on the normal density):
logLik(mymod)
#> [1] -46.36488

##extract the model matrix of the model:
model.matrix(mymod)
#>    vconst       arch1       arch2       arch3      vxreg1      vxreg2
#> 4       1  0.88771495 -2.93780915 -1.15793897  2.16895597  0.64437655
#> 5       1 -5.30404710  0.88771495 -2.93780915  1.20796200 -0.22048656
#> 6       1 -4.09142971 -5.30404710  0.88771495 -1.12310858  0.33178196
#> 7       1  1.07890195 -4.09142971 -5.30404710 -0.40288484  1.09683901
#> 8       1 -1.54907804  1.07890195 -4.09142971 -0.46665535  0.43518149
#> 9       1  0.47024106 -1.54907804  1.07890195  0.77996512 -0.32593159
#> 10      1 -0.75127040  0.47024106 -1.54907804 -0.08336907  1.14880762
#> 11      1 -1.61638906 -0.75127040  0.47024106  0.25331851  0.99350386
#> 12      1  0.40438202 -1.61638906 -0.75127040 -0.02854676  0.54839696
#> 13      1 -2.04433706  0.40438202 -1.61638906 -0.04287046  0.23873174
#> 14      1 -1.82872793 -2.04433706  0.40438202  1.36860228 -0.62790608
#> 15      1 -4.40217517 -1.82872793 -2.04433706 -0.22577099  1.36065245
#> 16      1 -1.17454551 -4.40217517 -1.82872793  1.51647060 -0.60025959
#> 17      1  1.16097925 -1.17454551 -4.40217517 -1.54875280  2.18733299
#> 18      1 -1.39491098  1.16097925 -1.17454551  0.58461375  1.53261063
#> 19      1  1.35262977 -1.39491098  1.16097925  0.12385424 -0.23570036
#> 20      1 -0.70947963  1.35262977 -1.39491098  0.21594157 -1.02642090
#> 21      1 -1.49820197 -0.70947963  1.35262977  0.37963948 -0.71040656
#> 22      1  0.13124532 -1.49820197 -0.70947963 -0.50232345  0.25688371
#> 23      1 -3.04675059  0.13124532 -1.49820197 -0.33320738 -0.24669188
#> 24      1  0.05134416 -3.04675059  0.13124532 -1.01857538 -0.34754260
#> 25      1 -0.63246153  0.05134416 -3.04675059 -1.07179123 -0.95161857
#> 26      1 -0.93988161 -0.63246153  0.05134416  0.30352864 -0.04502772
#> 27      1  1.04553998 -0.93988161 -0.63246153  0.44820978 -0.78490447
#> 28      1 -0.35398267  1.04553998 -0.93988161  0.05300423 -1.66794194
#> 29      1 -3.74976330 -0.35398267  1.04553998  0.92226747 -0.38022652
#> 30      1  0.25878532 -3.74976330 -0.35398267  2.05008469  0.91899661
#> 31      1  0.45238168  0.25878532 -3.74976330 -0.49103117 -0.57534696
#> 32      1 -1.70445361  0.45238168  0.25878532 -2.30916888  0.60796432
#> 33      1 -2.44107527 -1.70445361  0.45238168  1.00573852 -1.61788271
#> 34      1 -0.22158233 -2.44107527 -1.70445361 -0.70920076 -0.05556197
#> 35      1 -0.25991332 -0.22158233 -2.44107527 -0.68800862  0.51940720
#> 36      1 -0.39304929 -0.25991332 -0.22158233  1.02557137  0.30115336
#> 37      1 -0.74607254 -0.39304929 -0.25991332 -0.28477301  0.10567619
#> 38      1 -1.18147849 -0.74607254 -0.39304929 -1.22071771 -0.64070601
#> 39      1 -5.56409186 -1.18147849 -0.74607254  0.18130348 -0.84970435
#> 40      1 -2.36858440 -5.56409186 -1.18147849 -0.13889136 -1.02412879

##print the entries of object 'mymod':
summary(mymod)
#>                   Length Class      Mode     
#> call                4    -none-     call     
#> date                1    -none-     character
#> version             1    -none-     character
#> e                  37    -none-     numeric  
#> e2                 37    -none-     numeric  
#> e.index            37    -none-     numeric  
#> e.name              1    -none-     character
#> loge2              37    -none-     numeric  
#> vX                222    -none-     numeric  
#> vXnames             6    -none-     character
#> qstat.options       2    -none-     numeric  
#> normality.JarqueB   1    -none-     logical  
#> tol                 1    -none-     numeric  
#> n                   1    -none-     numeric  
#> k                   1    -none-     numeric  
#> df                  1    -none-     numeric  
#> coefficients        6    -none-     numeric  
#> fitted             37    zoo        numeric  
#> residuals          37    zoo        numeric  
#> vcov               36    -none-     numeric  
#> vcov.type           1    -none-     character
#> logl                1    -none-     numeric  
#> results             4    data.frame list     
#> diagnostics         6    -none-     numeric