Jiao-Pretis-Schwarz Outlier Distortion Test
distorttest.Rd
Implements the Jiao-Pretis-Schwarz test for coefficient distortion due to outliers by comparing coefficient estimates obtained using OLS to estimates obtained using the robust IIS estimator implemented using isat
. See the referenced Jiao-Pretis-Schwarz Paper below for more information.
Arguments
- x
object of class
isat
- coef
Either "all" (Default) to test the distortion on all coefficients or a character vector of explanatory variable names.
Value
Object of class isat
References
Xiyu Jiao, Felix Pretis,and Moritz Schwarz. Testing for Coefficient Distortion due to Outliers with an Application to the Economic Impacts of Climate Change. Available at SSRN: https://www.ssrn.com/abstract=3915040 or doi:10.2139/ssrn.3915040
Author
Xiyu Jiao https://sites.google.com/view/xiyujiao
Felix Pretis http://www.felixpretis.org
Moritz Schwarz https://moritzschwarz.org
Examples
if (FALSE) { # \dontrun{
data(Nile)
nile <- isat(Nile, sis=FALSE, iis=TRUE, plot=TRUE, t.pval=0.01)
distorttest(nile)
data("hpdata")
# Another example with co-variates
dat <- hpdata[,c("GD", "GNPQ", "FSDJ")]
Y <- ts(dat$GD,start = 1959, frequency = 4)
mxreg <- ts(dat[,c("GNPQ","FSDJ")],start = 1959, frequency = 4)
m1 <- isat(y = Y, mc = TRUE, sis = FALSE, iis = TRUE)
m2 <- isat(y = Y, mc = TRUE, sis = FALSE, iis = TRUE, ar = 1)
m3 <- isat(y = Y, mxreg = mxreg, mc = TRUE, sis = FALSE, iis = TRUE)
m4 <- isat(y = Y, mxreg = mxreg, mc = TRUE, sis = FALSE, iis = TRUE, ar = 1, t.pval = 0.01)
distorttest(m1, coef = "all")
distorttest(m2, coef = "all")
distorttest(m3, coef = "GNPQ")
distorttest(m4, coef = c("ar1", "FSDJ"))
} # }