Extraction functions for 'arx', 'gets' and 'isat' objects
paths.Rd
Extraction functions for objects of class 'arx', 'gets' and 'isat'
Author
Genaro Sucarrat, http://www.sucarrat.net/
Examples
##Simulate from an AR(1):
set.seed(123)
y <- arima.sim(list(ar=0.4), 50)
##Simulate four independent Gaussian regressors:
xregs <- matrix(rnorm(4*50), 50, 4)
##estimate an AR(2) with intercept and four conditioning
##regressors in the mean:
mymod <- arx(y, mc=TRUE, ar=1:2, mxreg=xregs)
rsquared(mymod)
#> [1] 0.1520805
rsquared(mymod, adjusted=TRUE)
#> [1] 0.02799468
##General-to-Specific (GETS) modelling of the mean:
meanmod <- getsm(mymod)
#>
#> GUM mean equation:
#>
#> reg.no. keep coef std.error t-stat p-value
#> mconst 1 0 0.042884 0.141657 0.3027 0.76362
#> ar1 2 0 0.345223 0.156817 2.2014 0.03339 *
#> ar2 3 0 0.052468 0.156733 0.3348 0.73951
#> mxreg1 4 0 -0.140760 0.165009 -0.8530 0.39859
#> mxreg2 5 0 -0.089124 0.145349 -0.6132 0.54315
#> mxreg3 6 0 -0.077072 0.145620 -0.5293 0.59947
#> mxreg4 7 0 -0.225367 0.169838 -1.3270 0.19187
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#>
#> Diagnostics:
#>
#> Chi-sq df p-value
#> Ljung-Box AR(3) 2.97870 3 0.39492
#> Ljung-Box ARCH(1) 0.14075 1 0.70754
#>
#> 6 path(s) to search
#> Searching:
#> 1
#> 2
#> 3
#> 4
#> 5
#> 6
#>
#> Path 1: 1 3 6 5 4 7
#> Path 2: 3 1 6 5 4 7
#> Path 3: 4 1 3 6 5 7
#> Path 4: 5 3 1 6 4 7
#> Path 5: 6 3 1 5 4 7
#> Path 6: 7 1 3 6 4 5
#>
#> Terminal models:
#>
#> info(sc) logl n k
#> spec 1 (1-cut): 2.749419 -64.05045 48 1
#>
#> Retained regressors (final model):
#>
#> ar1
rsquared(meanmod)
#> [1] 0.09401861
rsquared(meanmod, adjusted=TRUE)
#> [1] 0.09401861
##extract the paths searched:
paths(meanmod)
#> [[1]]
#> [1] 1 3 6 5 4 7
#>
#> [[2]]
#> [1] 3 1 6 5 4 7
#>
#> [[3]]
#> [1] 4 1 3 6 5 7
#>
#> [[4]]
#> [1] 5 3 1 6 4 7
#>
#> [[5]]
#> [1] 6 3 1 5 4 7
#>
#> [[6]]
#> [1] 7 1 3 6 4 5
#>
##extract the terminal models:
terminals(meanmod)
#> [[1]]
#> [1] 2
#>